按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
那么空旷,几乎是空无一物,这也情有可原,从我们的尺度看来,原子核应该像是远在天边吧?好,现在迎面来了一个电子,这是个好机会,让我们睁大眼睛,仔细地看一看它究竟是个粒子还是波?奇怪,为什么我们什么都看不见呢?啊,原来我们忘了一个关键的事实!
要“看见”东西,必须有光进入我们的眼睛才行。但现在我们变得这么小,即使光——不管它是光子还是光波——对于我们来说也太大了。但是不管怎样,为了探明这个秘密,我们必须得找到从电子那里反射过来的光,凭感觉,我知道从左边来了一团光(之所以说“一团”光,是因为我不清楚它究竟是一个光粒子还是一道光波,没有光,我也看不到光本身,是吧?),现在让我们勇敢地迎上去,啊,秘密就要揭开了!
随着“砰”地一声,我们被这团光粗暴地击中,随后身不由己地飞到半空中,被弹出了十万八千里。这次撞击使得我们浑身筋骨欲脱,脑中天旋地转,眼前直冒金星。我们忘了自己现在是个什么尺寸!要不是运气好,这次碰撞已经要了咱们的小命。当好不容易爬起来时,早就不知道自己身在何方,那个电子更是无影无踪了。
刚才真是好险,看来这一招是行不通的。不过,我听见声音了,是微粒和波动在前面争论呢,咱们还是跟着这哥俩去看个究竟。它们为了模拟一个电子的历程,从某个阴极射线管出发,现在,面前就是那著名的双缝了。
“嗨,微粒。”波动说道,“假如电子是个粒子的话,它下一步该怎样行动呢?眼前有两条缝,它只能选择其中之一啊,如果它是个粒子,它不可能两条缝都通过吧?”
“嗯,没错。”微粒说,“粒子就是一个小点,是不可分割的。我想,电子必定选择通过了其中的某一条狭缝,然后投射到后面的光屏上,激发出一个小点。”
“可是,”波动一针见血地说,“它怎能够按照干涉模式的概率来行动呢?比如说它从右边那条缝过去了吧,当它打到屏幕前,它怎么能够知道,它应该有90%的机会出现到亮带区,10%的机会留给暗带区呢?要知道这个干涉条纹可是和两条狭缝之间的距离密切相关啊,要是电子只通过了一条缝,它是如何得知两条缝之间的距离的呢?”
微粒有点尴尬,它迟疑地说:“我也承认,伴随着一个电子的有某种类波的东西,也就是薛定谔的波函数ψ,波恩说它是概率,我们就假设它是某种看不见的概率波吧。你可以把它想象成从我身上散发出去的某种看不见的场,我想,在我通过双缝之前,这种看不见的波场在空间中弥漫开去,探测到了双缝之间的距离,从而使我得以知道如何严格地按照概率行动。但是,我的实体必定只能通过其中的一条缝。”
“一点道理也没有。”波动摇头说,“我们不妨想象这样一个情景吧,假如电子是一个粒子,它现在决定通过右边的那条狭缝。姑且相信你的说法,有某种概率波事先探测到了双缝间的距离,让它胸有成竹知道如何行动。可是,假如在它进入右边狭缝前的那一刹那,有人关闭了另一道狭缝,也就是左边的那道狭缝,那时会发生什么情形呢?”
微粒有点脸色发白。
“那时候,”波动继续说,“就没有双缝了,只有单缝。电子穿过一条缝,就无所谓什么干涉条纹。也就是说,当左边狭缝关闭的一刹那,电子的概率必须立刻从干涉模式转换成普通模式,变成一条长狭带。”
“现在,我倒请问,电子是如何在穿过狭缝前的一刹那,及时地得知另一条狭缝关闭这个事实的呢?要知道它可是一个小得不能再小的电子啊,另一条狭缝距离它是如此遥远,就像从上海隔着大洋遥望洛杉矶。它如何能够瞬间作出反应,修改自己的概率分布呢?除非它收到了某种瞬时传播来的信号,怎么,你想开始反对相对论了吗?”
“好吧,”微粒不服气地说,“那么,我倒想听听你的解释。”
“很简单,”波动说,“电子是一个在空间中扩散开去的波,它同时穿过了两条狭缝,当然,这也就是它造成完美干涉的原因了。如果你关闭一个狭缝,那么显然就关闭了一部分波的路径,这时就谈不上干涉了。”
“听起来很不错。”微粒说,“照你这么说,ψ是某种实际的波,它穿过两道狭缝,完全确定而连续地分布着,一直到击中感应屏前。不过,之后呢?之后发生了什么事?”
“之后……”波动也有点语塞,“之后,出于某种原因,ψ收缩成了一个小点。”
“哈,真奇妙。”微粒故意把声音拉长以示讽刺,“你那扩散而连续的波突然变成了一个小点!请问发生了什么事呢?波动家族突然全体罢工了?”
波动气得面红耳赤,它争辩道:“出于某种我们尚不清楚的机制……”
“好吧,”微粒不耐烦地说,“实践是检验真理的唯一标准是吧?既然我说电子只通过了一条狭缝,而你硬说它同时通过两条狭缝,那么搞清我们俩谁对谁错不是很简单吗?我们只要在两道狭缝处都安装上某种仪器,让它在有粒子——或者波,不论是什么——通过时记录下来或者发出警报,那不就成了?这种仪器又不是复杂而不可制造的。”
波动用一种奇怪的眼光看着微粒,良久,它终于说:“不错,我们可以装上这种仪器。我承认,一旦我们试图测定电子究竟通过了哪条缝时,我们永远只会在其中的一处发现电子。两个仪器不会同时响。”
微粒放声大笑:“你早说不就得了?害得我们白费了这么多口水!怎么,这不就证明了,电子只可能是一个粒子,它每次只能通过一条狭缝吗?你还跟我唠叨个什么!”但是它渐渐发现气氛有点不对劲,终于它笑不出来了。
“怎么?”它瞪着波动说。
波动突然咧嘴一笑:“不错,每次我们只能在一条缝上测量到电子。但是,你要知道,一旦我们展开这种测量的时候,干涉条纹也就消失了……”
……
时间是1927年2月,哥本哈根仍然是春寒料峭,大地一片冰霜。玻尔坐在他的办公室里若有所思:粒子还是波呢?5个月前,薛定谔的那次来访还历历在目,整个哥本哈根学派为了应付这场硬仗,花了好些时间去钻研他的波动力学理论,但现在,玻尔突然觉得,这个波动理论非常出色啊。它简洁,明确,看起来并不那么坏。在写给赫维西(Hevesy)的信里,玻尔已经把它称作“一个美妙的理论”。尤其是有了波恩的概率解释之后,玻尔已经毫不犹豫地准备接受这一理论并把它当作量子论的基础了。
嗯,波动,波动。玻尔知道,海森堡现在对于这个词简直是条件反射似地厌恶。在他的眼里只有矩阵数学,谁要是跟他提起薛定谔的波他准得和谁急,连玻尔本人也不例外。事实上,由于玻尔态度的转变,使得向来亲密无间的哥本哈根派内部第一次产生了裂痕。海森堡……他在得知玻尔的意见后简直不敢相信自己的耳朵。现在,气氛已经闹得够僵了,玻尔为了不让事态恶化,准备离开丹麦去挪威度个长假。过去的1926年就是在无尽的争吵中度过的,那一整年玻尔只发表了一篇关于自旋的小文章,是时候停止争论了。
但是,粒子?波?那个想法始终在他脑中缠绕不去。
进来一个人,是他的另一位助手奥斯卡•;克莱恩(Oskar Klein)。在过去的一年里他的成就斐然,他不仅成功地把薛定谔方程相对论化了,还在其中引进了“第五维度”的思想,这得到了老洛伦兹的热情赞扬。不管怎么说,他可算哥本哈根最熟悉量子波动理论的人之一了。有他助阵,玻尔更加相信,海森堡实在是持有一种偏见,波动理论是不可偏废的。“要统一,要统一。”玻尔喃喃地说。克莱恩抬起头来看他:“您对波动理论是怎么想的呢?”
“波,电子无疑是个波。”玻尔肯定地说。
“哦,那样说来……”
“但是,”玻尔打断他,“它同时又不是个波。从BKS倒台以来,我就隐约地猜到了。”
克莱恩笑了:“您打算发表这一观点吗?”
“不,还不是时候。”
“为什么?”
玻尔叹了一口气:“克莱恩,我们的对手非常强大……非常强大,我还没有准备好……”
(注:老的说法认为,互补原理只有在不确定原理提出后才成型。但现在学者们都同意,这一思想有着复杂的来源,为了把重头戏留给下一章,我在这里先带一笔波粒问题。)
第七章 不确定性
一
我们的史话说到这里,是时候回顾一下走过的路程了。我们已经看到煊赫一时的经典物理大厦如何忽喇喇地轰然倾倒,我们已经看到以黑体问题为导索,普朗克的量子假设是如何点燃了新革命的星星之火。在这之后,爱因斯坦的光量子理论赋予了新生的量子以充实的力量,让它第一次站起身来傲视群雄,而玻尔的原子理论借助了它的无穷能量,开创出一片崭新的天地来。
我们也已经讲到,关于光的本性,粒子和波动两种理论是如何从300年前开始不断地交锋,其间兴废存亡有如白云苍狗,沧海桑田。从德布罗意开始,这种本质的矛盾成为物理学的基本问题,而海森堡从不连续性出发创立了他的矩阵力学,薛定谔沿着另一条连续性的道路也发现了他的波动方程。这两种理论虽然被数学证明是同等的,但是其物理意义却引起了广泛的争论,波恩的概率解释更是把数百年来的决定论推上了怀疑的舞台,成为浪尖上的焦点。而另一方面,波动和微粒的战争现在也到了最关键的时候。
接下去,物理学中将会发生一些真正奇怪的事情。它将把人们的哲学观改造成一种似是而非的疯狂理念,并把物理学本身变成一个大漩涡。20世纪最著名的争论即将展开,其影响一直延绵到今日。我们已经走了这么长的路,现在都筋疲力尽,委顿不堪,可是我们却已经无法掉头。回首处,白云遮断归途,回到经典理论那