友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
飞读中文网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

策略思维-第33章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



我们从一个更简单的问题开始,即写下连续投掷一枚硬币可能得出的结果。假如这个序列的确是一个随机序列,谁要是打算猜测你究竟写的是正面还是反面,他猜中的机会平均不会超过50%。不过,写下这么一个“随机”序列比你想像的要困难得多。
心理学家已经发现,人们往往会忘记这样一个事实,即投掷硬币翻出正面之后再投掷一次,这时翻出正面的可能性与翻出反面的可能性相等;这么一来,他们连续猜测的时候就会不停地从正面跳到反面,很少出现连续把宝押在正面的情况。假如一次公平的硬币投掷连续30次翻出正面,第31次投掷翻出正面的机会还是跟翻出反面的机会相等。根本没有“正面已经翻完”这回事。同样,在六合彩中,上周的号码在本周再次成为得奖号码的机会,跟其他任何号码相等。为避免一不小心在随机性里加人规律因素,我们需要一个更加客观或者更加独立的机制。
一个诀窍在于选择某种固定的规则,一但要是一个秘密的而且足够复杂的规则,人们很难破解。举个例子:看看我们的句子的长度。假如一个句子包含奇数个单词,把它当做硬币的正面;假如一个句子包含偶数个单词,把它当做反面。这就变成一个很好的随机数字发生器。回过头来计算前面的10个句子,我们得到反、正、正、反、正、反、正、正、正、反。假如我们这本书不够轻便,没关系,其实我们随时随地都带着一些随机序列。比如朋友和亲属的出生日期的序列。若出生日期是偶数,当做正面;若是奇数,当做反面。也可以看你的手表的秒针。假如你的手表不准,别人没办法知道现在秒针究竟处于什么位置。对于必须使自己的混合策略比例维持在50:50的棒球投手,我们的建议是,每投一个球,先瞅一眼自己的手表。假如秒针指向一个偶数,投一个快球;假如指向奇数,投一个下坠球。实际上,秒针可以帮助你获得任何混合策略比例。比如,现在你要用40%的时间投快球而用另外60%的时间投下坠球,那么,请选择在秒针落在124之间的时候投快球,落在2560之间的时候投下坠球。
7 .独一无二的情况
至此为此,上述所有推理过程都适用于橄榄球、篮球或者网球这样的比赛,在这些比赛中,相同的情况多次出现,而且每场比赛对垒的都是相同的参与者。于是,我们就有时间和机会看出任何有规则的行为,并相应采取行动。反过来,很重要的一点,在于避免一切会被对方占便宜的模式,坚持自己的最佳混合策略。不过,若是遇到只比一次的比赛,又该怎么办?
考察一场战役攻守双方的选择。这种情况通常都是独一无二的,彼此都不能从对方以前的行动中得出任何规律。但是,派出间谍侦察的可能性会引出一个随机选择的案例。假如你选择了一个具体的行动方针,却被敌人发现了你的打算,他就能选择对你最不利的行动方针。你希望让他大吃一惊;最稳妥的办法就是让你自己大吃一惊。你应该留出尽可能长的时间考虑各种可能的方案,直到最后一刻才通过一种不可预测的从而也是不可侦察的方法做出你的选择。这个方法包含的相对比例应该符合这样的要求:敌人就算发现了这个比例,也不能以此占据上风。不过,这其实就是我们前面已经讲过的最佳混合策略。
最后给你一个警告。即便在你采用了自己的最佳混合策略的时候,你还是有可能得到相当糟糕的结果。即便棒球投手戴夫· 
史密斯真的不可预测,有时候莱恩· 
戴克斯特拉还是可以碰巧猜中他会投什么球,将球击出场外。而在橄榄球比赛中,第三次死球且距离底线只剩一码的时候,稳扎稳打的选择是中路推进;不过,重要的是投出一个出其不意的球,迫使守方不敢轻举妄动。一且这样的传球得逞,球迷和体育解说员们会为选择这一策略而欢呼雀跃,赞扬教练是一个天才。假如传球失败,教练就会遭到众人批评:他怎么可以把宝押在一记长传之上,而不是选择稳扎稳打的中路推进?
评判这名教练的策略的时机,是在他将这个策略用于任何特定情况之前。教练应该公告天下,说混合策略至关重要;中路推进仍然是一个稳扎稳打的选择,其原因恰恰在于部分防守力量一定会被那个代价巨大的长传吸引过去。不过,我们怀疑,哪怕这名教练真会在比赛之前将这番理论通过所有的报纸和电视频道公告天下,只要他仍会在比赛里选择一个长传且不幸落败,他还是免不了遭到众人批评,就跟他此前根本没费心教给公众有关博弈论的知识差不多。
8 .谎言的安全措施
假如你采用了自己的最佳混合策略,那么,另一个参与者能不能发现这一点无关紧要,只要他不能提前发现你通过自己的随机机制为某个具体情况确定的具体行动方针。对于你的随机策略,他无计可施,占不了你的便宜。均衡策略恰恰就是用来防止对方通过这样的方式占你的便宜。不过,假如出于某种原因,你没有采取自己的最佳混合策略,这时,保密就是关键。泄露这一信息会让你付出巨大代价。与此同时,你也有同样的机会使对手误解你的计划。
1944年6月,盟军筹备诺曼底登陆的时候,想方设法让敌人相信攻击点会在法国北部的港口加来。最具创意的一招,是把一个德国间谍变成一个双重间谍,却又不是一般的双重间谍。英国人费尽心机让德国人听说自己的间谍叛变了,却又不让他们知道这个消息是有意泄露的。为了使德国人知道自己作为一个双重间谍多么(不)可信,这个家伙向德国发回了一些最整脚的信息。德国人发现这些信息只要按照字面意思反过来理解就对了。这是关键的一步。当这名双重间谍报告说盟军将在诺曼底登陆时,他说的是实话,偏偏德国.人反过来理解,认为这进一步确认了加来才是攻击点。这个策略还有一个优点,即盟军登陆之后,德国人再也摸不透他们的间谍是不是一个真正的双重间谍。他一直是德国仅有的正确信息来源。随着他在德国人那边的可信度逐步恢复,英国人可以通过他发出错误信息,引诱德国人上钩。'4'这个故事的问题在于,德国人本来应该可以预计到英国人的策略,并分析得知他们的间谍有可能叛变。硬用混合或者随机策略的时候,你不是每一次都能愚弄对手,也不是任何一个特定时候都能让他上当。你能得到的最好结果是让他们不断猜测,且有时候可以引诱他们上当。在这方面,当你知道正在和你交谈的人出于自己的利益会有误导你的想法的时候,最佳选择可能是忽略他所说的一切,而不是按照字面意思理解或者断定应该反过来理解。
以下是关于商界两名竞争对手在华沙火车站狭路相逢的故事。
“你去哪儿?”一个人问。
“明斯克。”另一个人答。
“明斯克?你还真有种!我知道,你之所以告诉我说你要去明斯克,是因为你想让我相信你要去平斯克。可你没想到我当真知道你其实是要去明斯克。那么,你为什么要对我说谎呢?〃 
'5'行动确实胜过言语一筹。通过观察你的对手的行动,你就能判断他想跟你说的事情究竟有几分可以相信。从我们列举的例子中可以看到,' 
你不能单单按照字面意思理解对手所说的事情。但这并不表示在你努力识破他的真实意图时,应该忽略他的行动。一方按照怎样的比例混合其均衡策略,关键取决于他的得益。因此,观察一个参与者的行动可以提供一些有关正在使用的混合比例的信息,同时这种观察也是一个很有价值的证据,有助于推断对手的得益。扑克游戏的叫牌过程就是一个很好的例子。
扑克玩家都知道采用混合策略的必要性。约翰·麦克唐纳(John 
McDonald)有这样的建议:“扑克玩家应该隐蔽在自相矛盾的面具后面。好的扑克玩家必须避免一成不变的策略,随机行动,偶尔还要走过头,违反正确策略的基本原则。”'6'一个“谨小慎微”的玩家难得大胜一回;没有人会跟他加码。他可能赢得许多小赌注,最后却不可避免会成为一个输家。一个经常虚张声势的“大大咧咧”的玩家,总会有人向他摊牌,于是也免不了失败的下场。最佳策略是将这两种策略混合使用。
假设你已经知道,一个经常遇到的扑克对手遇到手风顺的时候,会有2/3的机会加码,1/3的机会摊牌。假如手风不顺,则会有2/3的机会退出,1/3的机会加码。(一般而言,你在虚张声势的时候摊牌并不明智,因为你没有取胜的牌面。)于是,你可以画出图78,显示他采取各种行动的概率。
在他出牌之前,你相信他拿到一手好牌和一手坏牌的可能性是相等的。由于他的混合概率取决于他拿到什么牌,你就能从他的叫牌方式中得到更多信息。假如你看见他退出,你可以肯定他拿到了一手坏牌。假如他摊牌,你就知道他拿到了一手好牌。但是这两种情形下,赌博的过程已经结束。假如他加码,他拿到一手好牌的概率就是2:1 
。虽然他的叫牌不一定精确反映他拿到了什么牌,但你得到的信息还是会比刚刚开始玩牌的时候多。假如听到对方加码,你就可以将他拿到一手好牌的概率从1/2提高为2/3。①① 
在听见对方叫牌的条件下,估算概率采用了一种称为贝叶斯法则的数学技巧。在听到对方叫“X”,的条件下,对方有一手好牌的概率等于对方拿到一手好牌而又叫X的概率除以他叫“X”的总概率所得的商。于是,听见对方叫“退出”就表示他必然拿到一手坏牌,因为一个拿到一手好牌的人绝对不会“退出”。听见对方叫“摊牌”则表示他拿到一手好牌,因为玩家只会在拿到一手好牌的时候这么做。若是听见对方叫“加码”,计算就会稍微复杂一点:玩家拿到一手好牌且加码的概率等于(1/2)(2/3)1/3,而玩家拿
返回目录 上一页 下一页 回到顶部 1 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!