友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
飞读中文网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

策略思维-第15章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



现在我们可以想像两种杂志的经理正各自埋头琢磨。《时代》的经理说:“如果他卖1美元,我就卖2美元。不过,他因为知道我这么想,所以不会真的卖1美元,而是执行他在我卖2美元时的最佳对策,即2。50 
美元。那样的话我就不能卖2美元,而是采用我在他卖2。50 美元时的最佳对策,卖2。75 美元。不过,他因为知道我这么想…… 
”这样一层一层分析下去,究竟有完没完呢?
有的,结局是3美元。假如这位《时代》经理认为《新闻周刊》会卖3美元,那么他自己的最佳对策就是也卖3美元,反过来,从《新闻周刊》的角度分析也是一样。整个循环推理最后将聚成一点。
我们可以用图312 来显示这个结果,该图同时反映了两者的对策。可以看到,两条线在两家都卖3美元的一点相交。
图3ll图312我们已经找到了一个策略组合,其中,各方的行动就是针对对方行动而确定的最佳对策。一旦知道对方在做什么,就没人愿意改变自己的做法。博弈论学者把这么一个结果称为“均衡”。这个概念是由普林斯顿大学数学家约翰·纳什(John 
Nash)提出的。纳什的想法成为我们指导同时行动博弈的最后一个法则的基础。这个法则如下。
法则4:走完寻找优势策略和剔除劣势策略的捷径之后,下一步就是寻找这个博弈的均衡。
这一定就是夏洛克·福尔摩斯和莫里亚蒂教授曾经用来看穿对方心思的秘诀。
我们还要解释一下这个法则。为什么一个博弈的参与者非得达到这么一个结局呢?我们可以说出好几个理由。没有一个理由本身就有足够的说服力,不过,只要把几个理由结合起来,就能形成一个有力的答案。
首先,存在避免循环推理的必要,因为循环推理帮不上忙。均衡在没完没了的“我知道他知道我知道…… 
”的循环里是稳定不变的,这使参与者对其他人的行动的估计能保持连贯性。各方正确预计别人的行动,并且确定自己的最佳对策。
均衡策略的第二个好处出现在零和博弈中。在这种博弈里,参与者的利益严格相悖。你的对手不能通过引诱你采取一个均衡策略而得到任何好处。你已经充分考虑到他们对你正在做的事情会有什么样的最佳对策。
第三个理由是,均衡方法注重实效。要想证明一个东西是布丁,就要吃一吃。综观全书,我们将会利用均衡方法讨论许多博弈。我们希望读者来检验它对博弈结果的预测以及这种思维方式产生的行为指导方针。我们相信,这么做会使我们提供的案例更有意思,比抽象地讨论均衡方法的优点更有意义。'3'最后,可能存在一个对均衡概念的误解,我们希望各位可以避免。当我们说博弈的结果是均衡,并不自动意味着这就是对博弈的全体参与者最有利的结果,更不意味着是对整个社会作为一个整体而言最有利的结果。有利或者不利的评价永远属于另外一个问题,答案视各个案例的具体情况而各有不同。在第4章和第9章,我们会谈到这两种例子。
5 .盛宴还是饥荒
盛宴
均衡的概念是不是同时行动的博弈中循环推理问题的一个完全解?老天爷,不是的。有些博弈存在好几个均衡,有些博弈却一个均衡也没有,而在另外一些博弈里,均衡的概念还会由于接纳新型策略而变得更加微妙。我们现在就来描述和解释这几点。
开车的时候你应该走哪一边?这个问题不能通过运用优势策略或者劣势策略理论予以回答。不过,即便如此,答案却显得很简单。假如别人都靠右行驶,你也会留在右边。套用“假如我认为他认为”的框架进行分析,假如每个人都认为其他人认为每个人都会靠右行驶,那么每个人都会靠右行驶,而他们的预计也全都确切无误。靠右行驶将成为一个均衡。
不过,靠左行驶也是一个均衡,正如在英国、澳大利亚和日本出现的情况。这个博弈有两个均衡。均衡的概念没有告诉我们哪一个更好或者哪一个应该更好。假如一个博弈具有多个均衡,所有参与者必须就应该选择哪一个达成共识,否则就会导致困惑。
在开车行驶的例子里,一条早已制定的规则给了你答案。不过,若是遇到彼得和波拉打电话打到一半突然断了的事,你该怎么办?假如彼得马上再给波拉打电话,那么波拉应该留在电话旁(且不要给彼得打电话),好把自家电话的线路空出来。另一方面,假如波拉等待彼得给她打电话,而彼得也在等待,那么他们的聊天就永远没有机会继续下去。一方的最佳策略取决于另一方会采取什么行动。这里又有两个均衡,一个是彼得打电话而波拉等在一边,另一个则是恰好相反。
这两个人需要进行一次谈话,以帮助他们确定彼此一致的策略,也就是就应该选择哪一个均衡达成共识。一个解决方案是,原来打电话的一方再次负责打电话,而原来接电话的一方则继续等待电话铃响。这么做的好处是原来打电话的一方知道另一方的电话号码,反过来却未必是这样。另一种可能性是,假如一方可以免费打电话,而另一方不可以(比如彼得是在办公室而波拉用的是收费电话),那么,解决方案是拥有免费电话的一方应该负责第二次打电话。
为了检验读者协调达成一个均衡的能力,请思考下面的问题:明天某个时候你要在纽约市会见某人。他已被告知要与你会面。不过,双方都没有更多信息,不知道究竟何时或者在哪里会面。那么,你应该于何时去何地?
托马斯·谢林(Thomas 
Schelling)在他的《冲突策略》一书里使这个问题家喻户晓。这个问题只有通常最常见的答案,除此之外没有任何预先确定的正确答案。在我们的学生当中,正午时分在中央车站一直是最常见的答案。即便是普林斯顿的学生,虽然他们乘坐的到纽约的火车是在宾州车站而非中央车站停,他们的答案也是一样。①① 
也许最具创意的另一个答案来自加州大学圣迭戈分校教授塔妮亚·鲁尔曼(Tanya 
Luhrmann)。她的回答是:“纽约公立图书馆阅览室。”我们告诉她,这假如不是空前绝后的答案,也是相当少见的答案。她立即为她的选择进行了辩解。她说,这是因为,虽然她的成功机会可能很低,可她还是更有兴趣跟愿意选择纽约公立图书馆阅览室而非选择纽约中央车站的人见面!
饥荒
另一个复杂因素在于,并非所有博弈都有我们前面描述的那种均衡,哪怕是一个,在导弹截击的故事里,余下4个结果没有一个是均衡。举个例子,我们看看伊拉克I1策略遇到美国A4策略的情况。这一策略组合的结果是反导弹没能拦截导弹,假如美国转向A8策略,情况就会大不一样。不过,那样的话伊拉克就该转向I5策略,而美国反过来也要转向A4 
策略,伊拉克则相应转向I1策略,如此类推。关键在于,如果一方坚守某种确定行为,另一方就会因此大占便宜。双方惟一明智的做法在于随机选择自己这一步怎么走。实际上,导弹截击问题具有很强的对称性,以至于正确的策略组合简直是显而易见的:美国的策略应该随机地“一分为二”,一半时间选择A4策略,另一半时间选择A8策略,伊拉克则以同样的概率选择I1和I5策略。
这种“混合策略”即便在双方打算合作的时候也会出现。在前面提到的打电话的例子中,设想双方都投硬币决定自己是不是应该给对方打电话,根据前面给出的条件,两人这种随机行动的组合成为第三个均衡:假如我打算给你打电话,我有一半机会可以打通(因为这时你恰巧在等我打电话),还有一半机会发现电话占线;假如我等你打电话,那么,我同样会有一半机会接到你的电话,因为你有一半机会主动给我打电话。每一个回合双方完全不知道对方将会采取什么行动,他们的做法实际上对彼此都最理想。因为我们只有一半机会重新开始被打断的电话聊天,我们知道我们(平均来说)要尝试两次才能成功接通。
而在其他博弈中,各方应该按照什么概率采取不同策略的答案却没有这么明显。在第7章我们会建立一套法则来确定什么时候需要采取混合策略,还会介绍一个找出正确的几率组合的方法。
我们现在简要回顾一下。在同时行动的博弈中,我们有三个行动法则:一是寻找和运用优势策略;二是寻找和避免劣势策略,与此同时假设你的对手也在这么做;三是寻找和运用均衡。本章结束之际,我们来看一个案例,这个案例向各位展示了这些指导法则是怎样转化为实际行动的。
6 .案例分析之三:莽汉软招
罗伯特·坎普(Robert 
Campeau)在第一次投标收购联盟商店(及其掌上明珠布鲁明代尔百货商店)的时候,运用了一个称为两阶段出价法的竞购方案。这个案例分析将会研究这种出价方案作为一个策略行动的效能。这一行动会不会让收购者占了便宜,从而违反公平原则了呢?
典型的两阶段出价法给先出让股份的股东支付的价格高,给后出让股份的股东支付的价格低。为避免复杂的计算,我们假设出价收购前的股价是每股100美元。收购者在第一阶段提出一个较高价格,即每股105美元,向先出让股份的股东支付,直到全部股份的一半出让为止。另一半待出让股份则进入第二阶段,收购者愿意支付的股价只有90美元。出于公平原则,股份不是按照股东出让的时间次序分属不同阶段。相反,每个人都会得到一个混合的价格:所有出让股份会按照一定比例均等划入两个阶段(假如招标成功,那些未出让自己股份的人就会发现他们的股份落入第二阶段)。① 
我们可以用一个简单的代数表达式说明这些股份的平均支付价格。假如愿意出让的股份不超过50% 
,每个人都会得到105美元的股价;假如这家公司的全部股份当中有X%愿意出让,且X%〉50% 
,那么,每股
返回目录 上一页 下一页 回到顶部 1 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!