友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
飞读中文网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

纳什均衡与博弈论-第8章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  第五节 测量社会的体温

  在将经济学和物理学做对比的过程中,冯·诺依曼和摩根斯特恩多次提到关于热的理论(或者用个更加有名的名字,热力学)。比如,他们指出,为了寻找精确地衡量热的办法并没有直接产生热力学理论,因为物理学家首先需要一种理论来理解如何用准确清晰的方法来衡量热。类似的,博弈论需要首先发展起来,为经济学家提供正确衡量经济变量所需要的工具。

  热力学理论的例子还起了另外一个重要的作用,它使得博弈论里一个基本的问题得以阐述清楚。在书的开端,两位作者就申明,他们无意讨论“效用”的各种不同定义之间的微妙差别,这是哲学上的一片沼泽,他们不想冒这个险。在他们看来,如果只是为了经济上的应用而发展博弈论,那么只要简单地将“效用”和货币等价起来就可以了。如何来衡量效用呢?对于商人,用金钱(作为利润)来衡量是合乎逻辑的;对于消费者,付出(最小的花销)是个不错的选择,或者你也可以认为一个物体的效用就是你愿意为它付出的价钱。金钱可以被用作货币,将任何人的需求转化为更为具体的物体、事件、体验或者其他的任何东西。所以,将效用与金钱等同是一个方便简化的假设,在这种假设下,理论就可以集中关注如何获得你想要的东西,而不必陷于如何界定你想要的东西的复杂问题之中。

  不过,问题并没这么简单,关于效用还有一个重要的方面是冯·诺依曼和摩根斯特恩不得不讨论的。首先,是否能够用数值的方法定义效用,以使它更易符合数学理论?(伯努利曾提出一种计算效用的方法,但是他没有尝试证明这个概念可以为做理性抉择提供可靠一致的基础)。只要效用可以用数值的概念来体现,金钱(显然是数值的)绝对是对效用的复杂概念的一个很好的替代。既然这样,他们要解决的问题就转化为证明效用可以用一种严格的数学的方式定义。这意味着确认原理,从其中,效用的表达可以被推导出,并能得到量化。

  正如事后证明的那样,效用可以量化,使用的方法和物理学家用来建立有关温度的严密的科学定义的方法并无差异。毕竟,效用和温度的原始表述是近似的。效用,或者说优先选择,可以被看作是排序,如果你认为A优于B,B优于C,当然也就认为A优于C了。但是,要想用数字来表示A优于B多少,B优于C多少,就不那么容易了。这曾经与热力学极为相似——在热力学发展起来之前,我们能做的是比较两个物体的冷热,但并无必要说出相差多少,当然这也不精确。但是现在,基于热力学原理的绝对温度值给予温度一个精确量化的意义。冯·诺依曼和摩根斯特恩说明了如何类似地将排序转换为对效用的数值上的精确衡量。

  这种方法的本质可以从“大家来交易”(let's make a deal)这个游戏的改进版中看出来[年轻的读者可能对此不熟,这是名噪一时的电视游戏秀,在这个游戏里,主持人芒太·霍尔(Monty Hall)会给游戏选手一个交换他们手中奖品的机会,当然,交换的结果可能是更有价值的东西,但是也得冒着得到一个不值钱小礼物的风险]。假设,芒太给你3个选择:一部宝马敞篷车,一台高端宽屏等离子电视,或者是一辆二手三轮车。我们认为你最想要宝马,其次是电视机,最后是三轮车。在这种情况下对这3种产品的相对效用进行排序是很容易的。难的是怎么抉择,你的选择会得到那台等离子电视,或者50%的机会得到宝马。也就是说,已知电视机在1号门后,宝马则在2号或3号门的后面,另一个后面就是那辆三轮车了。

  这样你就得好好想想了。如果选择1号门,那就意味着你认为电视机的价值比一半宝马的高,但是假设游戏更加复杂,有更多的门,并且获得宝马的机会变成60%甚至70%,怎么办?在某一点,你将可能想去选择获得宝马的机会,这时,你就可以得出结论:效用在数值上是相等的。也就是说,对于你而言,等离子电视机价值等于宝马的75%(为了技术上的精确,还要加上三轮车的25%)。由此,我们得出结论:如果要给“效用”一个数值的价值,就不得不武断地给一种选择赋值,这样一来,利用“大家来交易”里概率的思想,就可以拿这个给定数值的选择和其他选择相比较了。

  到此为止,一切看起来都显得如此合理。但是,还有一个问题:在社会经济中,问题不仅仅是你个人的效用,你必须考虑其他人的选择。在小规模的“盖里甘岛”经济中,纯粹的战略选择可能会被诸如部分游戏参与者之间的联合这样的因素破坏。如何解决呢?热力学理论再一次为我们提供了帮助。

  温度是对分子运动快慢的衡量,总体而言,描述单个分子的速度就像计算鲁宾逊·克鲁索的效用一样简单。但是对于“盖里甘岛”,就变得很困难了,这就像热力学中,要想计算较少数目的相互作用的分子的速度实际上是不可能的。但是如果计算的是亿万以上的分子,情况又不一样了,此时分子间的相互作用趋于平均,利用热力学理论就可以对温度做出精确的预测(当然,这背后的数学是统计力学,在之后关于博弈论经历的章节中,将会看到它更为重要的作用)。

  冯·诺依曼和摩根斯特恩指出:“大数目通常要比小规模的数目更容易处理”。这也正是阿西莫夫(Asimov)在《心灵历史学家》中提出的观点,他认为:对于数目庞大的问题,尽管不能监测每个分子个体,但能预测它们的整体行为,这正是测量气体温度时所使用的方法。这种情况下,可以测量和所有分子的平均速度相关的某个数值,这个数值能反映单个分子之间是如何相互作用的。那么,为什么不能用同样的办法来处理人与人之间的问题呢?哈瑞·塞尔登(Hari Seldon)想到了这一点。对于一个规模足够大的经济,这个方法是适用的。“当参与者的数目变得尤为庞大时,”冯·诺依曼和摩根斯特恩写道,“每个参与者个体的影响就有可能可以忽略不计。”

  借助在书的开端对“效用”建立的坚实的基础,通过将金钱作为对效用的衡量,两位作者后面的工作就进展得很快了。书的主体也就投入了探讨如何寻找获得最多金钱的最佳策略的问题上面。

  基于这一点,一个很重要的问题需要弄明白,那就是书中的策略究竟指的是什么。在博弈论中,策略是一种特定的行为过程,而不是游戏中的一般玩法。例如,这和打网球不同,网球中,策略仅仅指“主动进攻”和“保守打法”。博弈论中的策略是对可能出现的种种情况所做出的一系列的选择。在网球比赛中,你的战略可能是“当对手发球时绝不冲到网前;无论比赛时是平局还是领先都要尽力发球和截球;落后时一定要呆在后场”。当然对其他情况你还有其他的应对策略。

  博弈论中有关策略的另外一个关键点是——“单纯策略”与“混合策略”的区别。在网球赛中,你可能会在每次发球后迅速地冲到网前(这是一个单纯策略),你也可能每3次发球中有一次冲到网前,另两次守在底线(这就是混合策略)。通常,要想让博弈论发挥作用,混合策略是不可或缺的。

  对于任何一件事情,问题不在于是否总存在一种好的普遍适用的策略,而是是否存在涵盖所有可能情况的策略行为的一系列最优的准则。事实上,对于二人零和博弈,答案是肯定的。利用冯·诺依曼1928年发表的论文中的最小最大化原理,一定可以找到这种最佳策略。他的关于这个原理的证明是出了名的复杂。但是其本质精华可以被提炼为简单易记的道理:打扑克时,虚张声势不可避免。

  第六节 掌握最小最大化原理

  在二人零和博弈中使用最小最大化原理的奥秘在于,你要铭记,一方赢得什么,另一方就失去什么(这正是零和的定义)。所以,你的策略就是尽可能使自己的收益最大化,这必将使对手的收益最小化。不过,显然你的对手也会这么想。

  当然,由于游戏的原因,很可能不论你玩得多好,最后什么也赢不到。游戏的规则和风险常常是先出招的人获胜,如果你第二个出招,你就输惨了。而且,某些策略可能会导致输得更多,这样一来,你就应当尽量最小化对手的收益(和你的损失)。问题是,采取什么样的策略可以达到这样的效果呢?是不是每次都应该坚守这种策略呢?

  事实证明,在有些博弈中,你的确可能找得到一种纯策略,在这种策略下,不论对手采取什么行动,它都能使你的收益最大化(或损失最小化)。显然,你将使用这个策略,并且如果游戏重复,你将每次重复使用相同的策略。但是有时,受游戏规则的影响,你的最佳选择与对手的选择有关,而你又可能不知道对手的选择,这正是博弈论所感兴趣的。

  首先,我们来看一个简单的例子。假设鲍勃欠爱丽丝10美元,他提议玩个游戏,如果他赢了,他欠的债将被减免(在现实社会中,爱丽丝会要求鲍勃花费多于10美元的代价去郊游野餐来抵消)。但是我们的目的是阐述博弈论思想,假设爱丽丝同意了这笔交易。

  鲍勃建议游戏这么玩:他和爱丽丝在图书馆见面,如果他先到,就付爱丽丝4美元,如果爱丽丝先到,就付爱丽丝6美元,如果两人同时到,鲍勃付5美元(正如我之前说过的,爱丽丝肯定会让他再加大数目的)。

  现在,假设两人住在一起,或者至少是邻居。两人都有两种策略到达图书馆:走路或者乘公共汽车(假设两人都很穷,都没有车,这也是鲍勃会为这10美元折腾的原因)。两人都知道公共汽车会比走路快。因而
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!