按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
逑担苡幸惶炜纱踊咀匀欢砂阉羌扑愠隼矗绺丛臃肿拥亩ㄌ梢源恿孔恿ρЩ虿ǘρЪ扑愠隼匆谎N颐且丫溃比』玖W拥男问绞保芰勘涑晌镏省D切┙凶龌玖W拥奶朐臃肿拥奶谎丛印;蛘甙颜馑品鞘凳堑乇硎鑫好扛隽W佑善渌磺辛W庸钩伞K晕颐遣荒芷谕玖W游锢硌Щ岜攘孔踊Ъ虻ァU馐且桓鲋匾悖蛭词瓜衷冢褂泻芏辔锢硌Ъ遗瓮心敲匆惶欤颐腔岱⑾忠恢址浅<虻サ姆椒ㄈッ枋龌玖W游锢恚孟竦蹦甑那夤馄啄茄U飧鑫蚁胧遣豢赡艿摹�
在结论中,关于什么叫做“偏见”我想再说几句。可以说,我们相信有基本粒子是一种偏见。但我又觉得那将是太消极的说法。因为在近二百年内,我们在原子物理中使用的语言,都是直接间接地以基本粒子的概念为基础的。我们经常问:“这物体由什么构成?较小粒子在较大物体中的几何或力学组态怎样?”实际上我们总是回到了德谟克利特的哲学;但我想现在我们已从狄拉克那里懂得了:这是个错误的问题。要避开已成为我们语言一部分的那些问题,仍是很困难的。所以很自然地,即便现在,许多实验物理学家,甚至还有一些理论物理学家,仍在寻找真正的基本粒子。例如,他们希望夸克能够担任这种角色,假如它存在的话。
我想这是个错误。其所以错误,因为即使夸克存在,也不能说质子是由三个夸克构成。我们必须说,它可能暂时由三个夸克构成,也可能由四个夸克一个反夸克,或五个夸克两个反夸克构成,等等。而所有这些组态都应包含在质子中;而一个夸克又可以由两个夸克一个反夸克所组成如此等等。因此我们无法回避这种基本的状况;但既然我们仍有从旧观念来的问题,避开它们是极端困难的。许许多多的物理学家在寻找夸克,并且将来大概还要找下去。以往十年内,有很强的偏见偏爱夸克,我以为假如它们真存在的话,应当已被发现了。但这是一件要由实验物理学家来决定的事。
还留有这样一个问题:应当用什么去代替基本粒子的概念呢?我想我们应当用基本对称性的概念来代替这个概念。基本对称性规定了决定基本粒子谱的基础定律。现在我不预备详细讨论这些对称性。仔细分析了观察的结果以后,我想作出论断:除洛伦兹群外,还有SU2,标度定律,以及分立变换P,C,T,都是真正的对称性。但我不想把SU3或这类高阶对称包括到基本对称性里去,它们可由体系动力学产生而作为近似对称性。
但这又是一件要由实验决定的事。我只想说,我们必须寻找的不是基本粒子,而是基本对称性。当我们确实作出了这个决定性的概念变化(这是由狄拉克发现反物质而来的)以后,我认为就不需要什么进一步的突破去理解基本(毋宁说是非基本)粒子了。我们只须学会用基本对称性这个新的、不幸是很抽象的概念去进行工作;但这可能是够糟糕的了。
'侯德彭译自《美国物理学期刊》(American Journal of Physics)1975年 5月号'
基本粒子是什么?
“基本粒子是什么?”这个问题当然必须首先由实验来回答,而且必定要涉及哲学思考。因此,我首先要对近五十年来的基本粒子物理学的最重要的实验成果作一简要的综合评述,并试图说明:如果人们无成见地考察这些实验,那末这些成果已经在相当大的程度上回答了上述问题,从而理论家也没有什么更多的话可补充的了。然后,我在第二部分将补充探讨与基本粒子概念相联系的哲学问题。因为,我认为,基本粒子理论的某些错误的发展——而我就怕确有这样的错误发展——是由于理论的创立者固执地对哲学模不关心,可是他们实际上不自觉地从坏的哲学出发从而由于成见提出了不合理的问题。人们或许可以稍为有点夸张地说,好的物理学不自觉地被坏哲学腐蚀了。最后我将讨论这些成问题的发展,它们可以和我亲身经历过的量子力学的历史中的错误发展相对比,我还将提出人们怎样才能避免这样的错误的一些建议。因此,这个报告的结论应该还是比较乐观的。
最重要的实验结果和它们的理论解释
我首先谈谈实验事实。差不多在五十年前,狄拉克在他的电子论中预言,除电子之外,必定还有它的反粒子——正电子;不多几年之后,安德森和布莱凯特(Blackett)用实验证明了正电子的存在(它在电子偶的产生过程中出现)以及所谓反物质的存在。这是头等重要的发现。因为在这以前,人们一般设想有两类基本粒子:电子和质子,它们与一切其他粒子的不同之点是,它们是决不能改变的,因此它们的数目也总是守恒的。正因为如此,人们称它们为基本粒子。一切物质被认为最终都应该由电子和质子组成。电子仍的产生和正电子的实验证明表明,这种设想是错误的。电子既可以产生,也可以湮灭;因此它们的数目决不守恒;它们不是原来意义上的基本粒子。
第二个重要步骤是F.约里奥和I.居里发现人工放射性。人们从许多试验知道,一个原子核可以通过发射粒子转变为别的原子核,只要能量、角动量、电荷等守恒定律允许这种转变。能量转化为质量,这在爱因斯坦的相对论中早已被认为是可能的,现在就成了经常观测到的现象了。这样也就谈不到什么粒子数的守恒了。可是还有一些可用量子数表征的物理性质——例如角动量或电荷,它们的量子数可以取正值或负值,而且守恒定律对于它们是有效的。
在三十年代,还有另一个重要的实验发现。人们证实了,在宇宙辐射中有能量很高的粒子,这些粒子和其他粒子碰撞时,例如和照相底片乳胶中的一个原子核相碰撞时,可以发射出有许多次级粒子的簇射。有一个时期,许多物理学家认为,这种簇射只能由原子核中的一种级联反应而形成;可是后来弄清楚了,实际上仅仅两个高能粒子碰撞也有理论上所预测的许多次级粒子产生。在四十年代末,鲍威耳发现了在这些簇射中起主要作用的
π介子。从而表明,在能量很高的粒子的碰撞中能量转化为物质是十分普遍的决定性过程,因此说什么“初始粒子的分裂”显然已没有什么意义了。“分裂”这个概念在实验上已经失去了意义。
在五十年代和六十年代的实验中,这种新的情况一再被证实;发现了许多长寿命的和短寿命的新粒子,而对于这些粒子由什么组成的问题,不再能作出明确的回答,因为这个问题没有理性的意义。比如说,一个质子可以由中子和π介子或者由Λ超子和K介子或者由两个核子和一个反核子合成;或者可以简单地说,一个质子由连续物质所组成;而所有这些陈述都是同样正确或者同样错误。基本粒子和复合粒子的区分从此根本消失了。这或许是近五十年来最重要的实验结果。
由于这种发展,实验迫使人们作这样一种类比:基本粒子多少类似于一个原子或一个分子的定态。有一整套粒子谱,就象铁原子或分子有一套定态谱一样,在最后一个例子中,我们既可以设想为一个分子的不同定态,也可以设想为化学中许多不同的分子。对于粒子我们可以说“物质”谱。实际上,六十年代和七十年代用大加速器所做的实验证明了这种类比符合迄今为止的一切经验。就象原子的定态一样,粒子也可以用量子数来表征,也就是用对称性和变换性来表征,结合这些量子数的精确的或者近似有效的守恒定律决定了转变的可能性。就象一个受激氢原子的空间转动状态决定了它的变换特性,决定了它是否能够通过发射一个光量子跃迁到一个较低的态一样,也可以提出这样的问题:一个φ玻色子能否发出一个
π介子衰变为一个ρ玻色子,是不是也是由这样的对称性决定的,就象处于不同定态的同种原子有很不相同的寿命一样,粒子也有很不相同的寿命。一个原子的基态是稳定的,它有无限长的寿命,而电子、质子、氖核等粒子也具有同样的特性。可是这些稳定粒子决不比不稳定粒子更为“基本”。氢原子的基态可由薛定谔方程导出,而氢原子的激发态也由同一个薛定谔方程导出。同样,电子和光量子也决不比一个Λ超子更基本。
因此,近年来的实验粒子物理学在其发展过程中履行着类似于二十年代初光谱学所履行的任务。就象当时出现了把所有原子的电子壳层的定态收集在内的大表册[所谓的帕邢图(Paschen
Gotze)'中一样,现在也有每年一次的全面的关于粒子性质的概览(Reviews of Particle
Properties),其中记载了物质的定态和它们的变换特性。这种编制这样内容丰富的表册的工作,同天文学家的天文观测概览相仿,很自然,每一个观测者希望有时能在他的领域内找到特别有趣味的对象。
但是,在原子的电子壳层物理学和粒子物理学间也有特征性的区别。在原子壳展中,人们所接触的能量是如此之低,以致相对论的特征可以忽略不计;因此人们可以利用非相对论性量子力学来表述。这意味着,以原子壳层物理学为一方,以粒子物理学为另一方,它们的有关对称群是不同的。原子壳层物理学中的伽利略群在粒子物理学中由洛伦兹群来替换;同时,在粒子物理学中加入了象同位旋群这样的新群,它和
SU2 群是同构的,然后加入了SU3群、标度群以及其他等等。确定粒子物理学中的有关群是一项重要的实验任务,而这在过去的二十年中已经在很大程度上解决了。
从原子壳层物理学我们可以了解到,在明显地只描述近似有效的对称性的那些群中,我们可以区分两种根本不同类型的群。例如我们想到光谱中的空间转动的
O3群和与光谱中的多重结构有关的O3 X O3群。量子力学方程对于空间转动群是严�