按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
学家对这一前景不能赞同。热带雷暴对赤道地区和极地之间的热交换起着重要作用。说到底,热带本身正是由于雷雨才存在的。如果没有雷雨,那里的沙漠面积将会增大许多倍,这就是为什么我们也应该防止这场灾难发生的原因。
其次,研究地点的选择问题。按照逻辑,似乎应该对污染最大的、高度城市化的地区进行观测。城市总共只占地球表面的5%左右。因此,是否可以认为局部污染不反映整个地球的总的趋向呢?
在自然环境中积聚起来的中等强度的污染叫做伴溶性污染,在其作用区会有生物圈各种因子。正是这种污染成为生态学家注意的目标。因此,伴溶性污染成为全球环境监视系统的最重要研究方向之一。为此将建立一个全新的系统——由一些基本台站和地区台站组成的伴溶性污染观测网。
伴溶性污染监视的主要工作是同时对空气、大气降水、河水、海水、地面沉积物、土壤和动植物机体等所受污染进行研究。这使人有可能取得自然界中污染物质的平衡和循环的资料以及它们在动植物体中积累情况的资料。
不久前人们发现,污染物质还具有可变性质。当它从一个地区到达另一地区时,可以改变自己的形态,并使其毒性急剧增长。
水域酸化的原因是人所共知的。由电石、冶金石和炼油厂散发出来的二氧化硫使空气污染严重。在世界某些地区,雨除了名义上叫雨外,它和工业时代以前的雨已无共同性可言。现在从天上降下的不是水而是硫酸和硝酸的溶液。有人认为这种雨是“弱酸”。但实际上它很强,可以腐蚀大理石、石头和金属。现在不仅大自然和社会,而且还有许多无价的历史文物正在成为工厂和电厂吐出的硫化物的牺牲品。由于这种“酸雨”作崇,使得雅典女神庙和古罗马大剧场正受到损害而处于严重的危险中。
70年前才发现硫的生成物对植物有害。有人认为硫造成的危害并不局限于靠近污染源的一些小块森林。硫化物在空气中进行一系列化学反应并能到达很远的地方。二氧化硫离开A点时可能是无害的物质,而到达B点时可能变成毒性极大的石风甲烷。而且在二氧化硫传播路径上,硫酸最大浓度可出现在离发源地200~250公里处,而硫酸盐最大浓度可出现在600公里的地方。
因此出现了令人难以置信的情况,即远离污染源的最“洁净”地区竟然是污染最严重的地区,因为硫化物在途中与别的污染物质反应而毒性加剧。
人们广泛利用空气、土壤和水来消散工业废料。比如,有人用7~12倍活水来冲淡工业原料以便排泄。据计算,到2000年,如要满足这种用水量,就要用上全世界的河流。长时间以来,人们从高耸入云的工厂烟囱中发现了治疗“灰害”的弊端。当烟囱向数百米高空喷射有毒烟雾时,它本身成了远程的大炮。所以研究硫化物历史令人信服地表明,在我们这个时代要想享有一块“洁净”天空已属妄想了。
正因为如此,建立全球环境监护系统是今天保护地球洁净斗争中重大成果之一。这一工作现在仅是开始。人们希望人与环境不要形成悲剧性的相互关系。人们的任务是学会从人类和大自然双边利益考虑,来利用生物圈。
全球地理环境的结构
地理环境是一个统一的整体,其各组成要素和各个组成部分之间处于相互联系、相互制约之中。譬如,由于气候转暖,第四纪冰川退却,从而引起了各大洋海面的升高和海岸的变化;在陆上引起地面塑造过程、风化方式和成土作用的变化以及植物和动物的向北(在北半球)或向南(在南半球)移动等。南美洲西岸荒漠区的变化则提供了地理环境各部分之间紧密联系的生动实例。
在正常情况下,该区无论在气候、地貌、水文性质、土壤、植被的生活型等方面,均体现干旱的特性,这主要导因于南太平洋副热带高压东缘的下沉气流和沿海寒流影响。但遇西太平洋信风气流发生反向转变的年份,一股水面下的暖流沿赤道向东太平洋流动,使南美洲赤道附近西岸海面升高,表层暖水温度上升和厚度增大,于是经厄瓜多尔至秘鲁一带沿岸从赤道方面流来巨股表层暖水,使沿岸气温和降水量显著增加,导致水文、植物、动物也相应发生变化,区域的综合特性从干旱向湿润转化。这种反常现象,大致每隔二三年或四五年左右发生一次。
地球自诞生以来,风云变幻,历经沧桑,处于永恒的运动和变化之中,按照板块构造理论,地球表层岩石圈被裂解为若干巨大的板块。刚性的岩石圈板块驮伏在塑性软流圈之上,在地球表层作大规模水平运动。板块与板块之间,在地幔对流的驱动下,或相背分离,或相向聚合,或相互平移,从而发生板块的扩张、俯冲、碰撞或错动。板块运动及其相互作用,带动了大陆漂移和大洋的启闭,导致了造山运动、火山、地震等种种地质构造作用。板块构造学家认为,在早古生代,地球上存在统一的南方大陆和离散的北方大陆。到古生代末,北方大陆(劳亚古陆)与南方大陆(冈瓦纳古陆)联为一体,叫做泛大陆。此时全球是由一个大陆和一个大洋组成。从中生代至新生代,新大洋先后开启,大陆则在漂移中由合而分。其中冈瓦纳古陆发生多次分裂解体,多数裂解的块体向北漂移,相继归并于劳亚古陆,后者扩展增生;在劳亚古陆内部,北大西洋开始启开,北美大陆与欧洲乃沿此裂开、分离。
全球便逐步演变为今天各个大陆和各个大洋的分布格局,但这不过是地球发展历史的一幕。
地球表面高低起伏悬殊,形态变化多端。喜马拉雅山脉的珠穆朗玛峰的现测高度为海拔8848。13米,这是陆地上的最高点;而西亚约旦河的尾闾死海的水面为—392米,是陆地上的最低点,高低差距9240。13米。陆地地形通常分为山地、平原、高原、盆地、丘陵等类型,它们以不同的规模在各大陆上交相分布,构成陆地表面起伏不平的外貌。
山地所占面积并不大。陆地上有两大高山带,一是环太平洋带,沿太平洋两岸作南北向分布;另一个是横贯亚欧大陆中南部及非洲大陆北缘,略呈东西向分布。两大高山带是中生代以来近期地壳运动的产物,陆地上最高峻、宏伟的年轻山脉几乎都集中于此,这里也是火山和地震活动最强烈的地带。
中生代以前形成的山脉,如北美洲东部、欧洲中部和西北部、中亚、澳大利亚东部等,由于年代已久,历经风化剥蚀,与上述高山带相比,山势大为逊色。
陆地上平原面积最广,约1/4的地面海拔不足200米。多属大河冲积平原,常见于大陆中部和沿海地带,往往傍以山地或高原,这在北美和南美大陆最为显著。
大片隆起的高原一般以前寒武纪古陆为核心,地壳相对较稳定,起伏不大。如非洲大陆的高原,亚洲中西伯利亚、蒙古高原和南部三大半岛上的高原,澳大利亚西部高原,以及被巨厚冰层覆盖的南极大陆高原,等等。另一些高原处于前述年轻山脉之间,地壳活动比较强烈,海拔较高,地面起伏也很大,如亚洲的青藏高原、伊朗高原及美洲西部山系中多数山间高原等。
以海平面为基准,陆地的平均高度是875米,而海洋的平均深度达3800米。海底地形大致可分为大陆边缘、大洋中脊和洋底盆地三大单元。
大陆边缘处于大陆和洋底盆地之间广阔的过渡地带,约占大洋总面积的22%。大西洋、印度洋和北冰洋周缘称大西洋型大陆边缘,通常由大陆架、大陆坡和大陆麓三部分组成。大陆架是陆地向海洋延伸的浅水地域,地势微缓倾斜,最宽者可达1000多公里;大陆架向洋侧进入大陆坡地带,坡度显著增加,水深也急剧加大,宽约数十至数百公里,地形崎岖,常被海底峡谷所切割;大陆坡坡脚之下为大陆麓,这是由沉积物堆积而成的坦坡,宽达数百至上千公里,平缓地过渡到洋底盆地。太平洋周缘称太平洋型大陆边缘,大陆架狭窄,大陆坡很陡,缺失大陆麓,而代之以海沟。这里是板块的潜没(俯冲)带,洋底最深的地方,地壳活动特别强烈。在太平洋西缘,海沟与岛弧相伴;在太平洋东缘,海沟直接毗邻大陆地块,与陆上年轻的褶皱山脉构成地球表面最大的地形高差。
大洋中脊在太平洋、大西洋、印度洋和北冰洋内连续延伸,相对高度2000~3000米,总长度约80000公里,巍然耸立在洋底之上,堪称地球表面最长的山系。在大西洋,它的位置居中,走向与两岸轮廓一致,“中脊”之名即由此而来。大洋中脊是软流圈地幔物质上涌、板块增生之处,火山活动较强烈,部分火山山峰露出海面成为岛屿。
洋底盆地介于大陆边缘与大洋中脊之间,水深一般在4000~5000米。这里分布有纵横的海岭,林立的海峰,孤立突兀的海丘,平缓隆起的海底高原,它们将洋底盆地割成若干个海盆。海盆底部发育深海平原,坡度微缓,是地球表面最平坦的部分。
全球海陆分布与地表形态
海洋和陆地是地球表面的第一级分异。太平洋、大西洋、印度洋和北冰洋互相沟通,连为一体,包围着6块大陆:亚欧大陆(分为亚洲和欧洲)、非洲大陆、北美大陆、南美大陆、南极大陆和澳大利亚大陆(大洋洲的主体)。
海洋总面积36100万平方公里,陆地总面积14900万平方公里。
海陆分布有如下特点:首先,陆地主要集中在北半球,约占北半球总面积的2/5;而在南半球陆地面积只占1/5。在北半球的中、高纬度,陆地分布几乎连续不断,最为宽广;南半球的陆地在中、高纬度显著收缩,南纬56°~65°之间,除一些岛屿外,几乎全部为广阔的海洋。但是,北半球�