ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
·É¶ÁÖÐÎÄÍø ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

on the improvement of the understanding(Ìá¸ßÔĶÁÄÜÁ¦)-µÚ3ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




begin¡¡to¡¡know¡¡my¡¡own¡¡powers¡¡and¡¡the¡¡nature¡¡which¡¡I¡¡wish¡¡to¡¡perfect¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§19£§¡¡£¨1£©¡¡Reflection¡¡shows¡¡that¡¡all¡¡modes¡¡of¡¡perception¡¡or¡¡knowledge¡¡

may¡¡¡¡be¡¡¡¡¡¡reduced¡¡to¡¡¡¡¡¡four£º¡­¡¡¡¡¡¡I¡£¡¡¡¡¡¡£¨2£©¡¡¡¡¡¡Perception¡¡¡¡¡¡arising¡¡¡¡¡¡from¡¡¡¡hearsay¡¡¡¡or¡¡¡¡¡¡from¡¡

some¡¡sign¡¡which¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡everyone¡¡may¡¡name¡¡as¡¡he¡¡please¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡II¡£¡¡£¨3£©¡¡Perception¡¡

arising¡¡¡¡¡¡¡¡¡¡from¡¡¡¡¡¡¡¡mere¡¡¡¡¡¡¡¡experience¡¡¡¡¡¡¡¡¡¡¡¡¡­¡¡¡¡that¡¡¡¡is£»¡¡¡¡form¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡experience¡¡¡¡¡¡¡¡¡¡¡¡¡¡not¡¡¡¡¡¡yet¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6¡¡


¡­¡¡Page¡¡7¡­

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡On¡¡the¡¡Improvement¡¡of¡¡the¡¡Understanding¡¡



classified¡¡by¡¡the¡¡intellect£»¡¡and¡¡only¡¡so¡¡called¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡because¡¡the¡¡given¡¡event¡¡

has¡¡happened¡¡to¡¡take¡¡place£»¡¡and¡¡we¡¡have¡¡no¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡contradictory¡¡fact¡¡to¡¡set¡¡

against¡¡¡¡¡¡it£»¡¡¡¡¡¡so¡¡¡¡¡¡that¡¡¡¡¡¡it¡¡¡¡¡¡therefore¡¡¡¡¡¡remains¡¡¡¡¡¡¡¡¡¡unassailed¡¡¡¡¡¡in¡¡¡¡¡¡our¡¡¡¡¡¡minds¡£¡¡¡¡¡¡III¡£¡¡

£¨19£º4£©¡¡¡¡¡¡¡¡¡¡Perception¡¡¡¡¡¡¡¡¡¡arising¡¡¡¡¡¡when¡¡¡¡¡¡¡¡¡¡the¡¡¡¡¡¡essence¡¡¡¡¡¡¡¡of¡¡¡¡one¡¡¡¡¡¡¡¡thing¡¡¡¡¡¡is¡¡¡¡inferred¡¡

from¡¡¡¡¡¡another¡¡¡¡¡¡thing£»¡¡¡¡¡¡but¡¡¡¡¡¡not¡¡¡¡¡¡adequately£»¡¡¡¡¡¡this¡¡¡¡¡¡comes¡¡¡¡¡¡when¡¡¡¡¡¡£§f£§¡¡¡¡¡¡from¡¡¡¡¡¡some¡¡

effect¡¡¡¡¡¡¡¡we¡¡¡¡¡¡gather¡¡¡¡¡¡¡¡its¡¡¡¡cause£»¡¡¡¡or¡¡¡¡¡¡when¡¡¡¡¡¡¡¡it¡¡¡¡is¡¡¡¡inferred¡¡¡¡¡¡from¡¡¡¡¡¡some¡¡¡¡¡¡¡¡¡¡general¡¡

proposition¡¡that¡¡some¡¡property¡¡is¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡always¡¡present¡£¡¡IV¡£¡¡£¨5£©¡¡Lastly£»¡¡there¡¡is¡¡

the¡¡¡¡¡¡perception¡¡¡¡¡¡arising¡¡¡¡¡¡when¡¡¡¡¡¡a¡¡¡¡¡¡thing¡¡¡¡¡¡is¡¡¡¡¡¡¡¡¡¡¡¡¡¡perceived¡¡¡¡¡¡solely¡¡¡¡¡¡through¡¡¡¡¡¡its¡¡

essence£»¡¡or¡¡through¡¡the¡¡knowledge¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡its¡¡proximate¡¡cause¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§20£§¡¡£¨1£©¡¡All¡¡these¡¡kinds¡¡of¡¡perception¡¡I¡¡will¡¡illustrate¡¡by¡¡examples¡£¡¡£¨2£©¡¡

By¡¡hearsay¡¡I¡¡know¡¡the¡¡day¡¡of¡¡my¡¡birth£»¡¡my¡¡parentage£»¡¡and¡¡other¡¡matters¡¡

about¡¡which¡¡I¡¡have¡¡never¡¡felt¡¡any¡¡doubt¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨3£©¡¡By¡¡mere¡¡experience¡¡I¡¡know¡¡

that¡¡¡¡¡¡I¡¡¡¡¡¡shall¡¡¡¡¡¡die£»¡¡¡¡¡¡for¡¡¡¡¡¡this¡¡¡¡¡¡I¡¡¡¡¡¡can¡¡¡¡¡¡affirm¡¡¡¡¡¡from¡¡¡¡¡¡having¡¡¡¡¡¡seen¡¡¡¡¡¡that¡¡¡¡¡¡others¡¡¡¡¡¡like¡¡

myself¡¡have¡¡died£»¡¡though¡¡all¡¡did¡¡not¡¡live¡¡for¡¡the¡¡same¡¡period£»¡¡or¡¡die¡¡by¡¡the¡¡

same¡¡disease¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨4£©¡¡I¡¡know¡¡by¡¡mere¡¡experience¡¡that¡¡oil¡¡has¡¡the¡¡property¡¡of¡¡

feeding¡¡fire£»¡¡and¡¡water¡¡of¡¡extinguishing¡¡it¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨5£©¡¡In¡¡the¡¡same¡¡way¡¡I¡¡know¡¡

that¡¡a¡¡dog¡¡is¡¡a¡¡barking¡¡animal£»¡¡man¡¡a¡¡rational¡¡animal£»¡¡and¡¡in¡¡fact¡¡nearly¡¡all¡¡

the¡¡practical¡¡knowledge¡¡of¡¡life¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§21£§¡¡¡¡¡¡¡¡£¨1£©¡¡¡¡¡¡We¡¡¡¡¡¡deduce¡¡¡¡¡¡one¡¡¡¡¡¡thing¡¡¡¡¡¡from¡¡¡¡¡¡another¡¡¡¡¡¡as¡¡¡¡¡¡follows£º¡¡¡¡¡¡when¡¡¡¡¡¡we¡¡

clearly¡¡perceive¡¡that¡¡we¡¡feel¡¡a¡¡certain¡¡body¡¡and¡¡no¡¡other£»¡¡we¡¡thence¡¡clearly¡¡

infer¡¡¡¡¡¡that¡¡¡¡¡¡the¡¡¡¡¡¡mind¡¡¡¡¡¡is¡¡¡¡¡¡united¡¡¡¡¡¡£§g£§¡¡¡¡¡¡to¡¡¡¡¡¡the¡¡¡¡body£»¡¡¡¡¡¡and¡¡¡¡¡¡that¡¡¡¡¡¡their¡¡¡¡¡¡union¡¡¡¡¡¡is¡¡¡¡¡¡the¡¡

cause¡¡of¡¡the¡¡given¡¡sensation£»¡¡but¡¡we¡¡cannot¡¡thence¡¡absolutely¡¡understand¡¡

£§h£§¡¡the¡¡nature¡¡of¡¡the¡¡sensation¡¡and¡¡the¡¡union¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨2£©¡¡Or£»¡¡after¡¡I¡¡have¡¡become¡¡

acquainted¡¡with¡¡the¡¡nature¡¡of¡¡vision£»¡¡and¡¡know¡¡that¡¡it¡¡has¡¡the¡¡property¡¡of¡¡

making¡¡¡¡¡¡one¡¡¡¡¡¡and¡¡¡¡¡¡the¡¡¡¡¡¡same¡¡¡¡¡¡thing¡¡¡¡¡¡appear¡¡¡¡¡¡smaller¡¡¡¡¡¡when¡¡¡¡¡¡far¡¡¡¡¡¡off¡¡¡¡¡¡than¡¡¡¡¡¡when¡¡

near£»¡¡I¡¡can¡¡infer¡¡that¡¡the¡¡sun¡¡is¡¡larger¡¡than¡¡it¡¡appears£»¡¡and¡¡can¡¡draw¡¡other¡¡

conclusions¡¡of¡¡the¡¡same¡¡kind¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§22£§¡¡¡¡¡¡¡¡£¨1£©¡¡Lastly£»¡¡a¡¡thing¡¡may¡¡be¡¡perceived¡¡solely¡¡through¡¡its¡¡essence£»¡¡

when£»¡¡from¡¡the¡¡fact¡¡of¡¡knowing¡¡something£»¡¡I¡¡know¡¡what¡¡it¡¡is¡¡to¡¡know¡¡that¡¡

thing£»¡¡or¡¡when£»¡¡from¡¡knowing¡¡the¡¡essence¡¡of¡¡the¡¡mind£»¡¡I¡¡know¡¡that¡¡it¡¡is¡¡

united¡¡to¡¡the¡¡body¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨2£©¡¡By¡¡the¡¡same¡¡kind¡¡of¡¡knowledge¡¡we¡¡know¡¡that¡¡two¡¡

and¡¡three¡¡make¡¡five£»¡¡or¡¡that¡¡two¡¡lines¡¡each¡¡parallel¡¡to¡¡a¡¡third£»¡¡are¡¡parallel¡¡

to¡¡one¡¡another£»¡¡&c¡£¡¡£¨3£©¡¡The¡¡things¡¡which¡¡I¡¡have¡¡been¡¡able¡¡to¡¡know¡¡by¡¡this¡¡

kind¡¡of¡¡knowledge¡¡are¡¡as¡¡yet¡¡very¡¡few¡£¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7¡¡


¡­¡¡Page¡¡8¡­

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡On¡¡the¡¡Improvement¡¡of¡¡the¡¡Understanding¡¡



¡¡¡¡¡¡¡¡¡¡£§23£§¡¡¡¡¡¡¡¡¡¡£¨1£©¡¡In¡¡order¡¡that¡¡the¡¡whole¡¡matter¡¡may¡¡be¡¡put¡¡in¡¡a¡¡clearer¡¡light£»¡¡I¡¡

will¡¡¡¡¡¡make¡¡¡¡¡¡use¡¡¡¡¡¡of¡¡¡¡¡¡a¡¡¡¡¡¡single¡¡¡¡¡¡illustration¡¡¡¡¡¡as¡¡¡¡¡¡follows¡£¡¡¡¡¡¡£¨2£©¡¡Three¡¡¡¡¡¡numbers¡¡¡¡¡¡are¡¡

given¡¡¡¡¡¡¡­¡¡¡¡¡¡it¡¡¡¡¡¡is¡¡¡¡¡¡required¡¡¡¡¡¡to¡¡¡¡¡¡find¡¡¡¡¡¡a¡¡¡¡¡¡fourth£»¡¡¡¡¡¡which¡¡¡¡¡¡shall¡¡¡¡¡¡be¡¡¡¡¡¡to¡¡¡¡¡¡the¡¡third¡¡¡¡¡¡as¡¡¡¡¡¡the¡¡

second¡¡is¡¡to¡¡the¡¡first¡£¡¡£¨23£º3£©¡¡Tradesmen¡¡will¡¡at¡¡once¡¡tell¡¡us¡¡that¡¡they¡¡know¡¡

what¡¡is¡¡required¡¡to¡¡find¡¡the¡¡fourth¡¡number£»¡¡for¡¡they¡¡have¡¡not¡¡yet¡¡forgotten¡¡

the¡¡rule¡¡which¡¡was¡¡given¡¡to¡¡them¡¡arbitrarily¡¡without¡¡proof¡¡by¡¡their¡¡masters£»¡¡

others¡¡¡¡¡¡¡¡¡¡construct¡¡¡¡¡¡¡¡a¡¡¡¡universal¡¡¡¡¡¡¡¡¡¡axiom¡¡¡¡¡¡¡¡from¡¡¡¡¡¡¡¡their¡¡¡¡¡¡experience¡¡¡¡¡¡¡¡¡¡¡¡with¡¡¡¡¡¡simple¡¡

numbers£»¡¡where¡¡the¡¡fourth¡¡number¡¡is¡¡self¡­evident£»¡¡as¡¡in¡¡the¡¡case¡¡of¡¡2£»¡¡4£»¡¡3£»¡¡

6£»¡¡here¡¡it¡¡is¡¡evident¡¡that¡¡if¡¡the¡¡second¡¡number¡¡be¡¡multiplied¡¡by¡¡the¡¡third£»¡¡

and¡¡the¡¡product¡¡divided¡¡by¡¡the¡¡first£»¡¡the¡¡quotient¡¡is¡¡6£»¡¡when¡¡they¡¡see¡¡that¡¡

by¡¡this¡¡process¡¡the¡¡number¡¡is¡¡produced¡¡which¡¡they¡¡knew¡¡beforehand¡¡to¡¡be¡¡

the¡¡proportional£»¡¡they¡¡infer¡¡that¡¡the¡¡process¡¡always¡¡holds¡¡good¡¡for¡¡finding¡¡

a¡¡fourth¡¡number¡¡proportional¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§24£§¡¡¡¡¡¡¡¡¡¡¡¡£¨1£©¡¡¡¡¡¡¡¡Mathematicians£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡however£»¡¡¡¡¡¡¡¡¡¡¡¡know¡¡¡¡¡¡¡¡¡¡by¡¡¡¡¡¡¡¡the¡¡¡¡¡¡proof¡¡¡¡¡¡¡¡of¡¡¡¡¡¡the¡¡

nineteenth¡¡¡¡¡¡proposition¡¡¡¡¡¡of¡¡¡¡¡¡the¡¡¡¡seventh¡¡¡¡¡¡book¡¡¡¡¡¡of¡¡¡¡¡¡Euclid£»¡¡¡¡¡¡what¡¡¡¡¡¡numbers¡¡¡¡¡¡are¡¡

proportionals£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡namely£»¡¡¡¡¡¡¡¡¡¡from¡¡¡¡¡¡¡¡the¡¡¡¡¡¡nature¡¡¡¡¡¡and¡¡¡¡¡¡¡¡property¡¡¡¡¡¡¡¡¡¡of¡¡¡¡proportion¡¡¡¡¡¡¡¡¡¡¡¡it¡¡

follows¡¡that¡¡the¡¡product¡¡of¡¡the¡¡first¡¡and¡¡fourth¡¡will¡¡be¡¡equal¡¡to¡¡the¡¡product¡¡

of¡¡the¡¡second¡¡and¡¡third£º¡¡still¡¡they¡¡do¡¡not¡¡see¡¡the¡¡adequate¡¡proportionality¡¡

of¡¡¡¡¡¡the¡¡¡¡¡¡given¡¡¡¡¡¡numbers£»¡¡¡¡¡¡or£»¡¡¡¡¡¡if¡¡¡¡¡¡they¡¡¡¡¡¡do¡¡¡¡¡¡see¡¡¡¡¡¡it£»¡¡¡¡¡¡they¡¡¡¡¡¡see¡¡¡¡¡¡it¡¡¡¡¡¡not¡¡¡¡¡¡by¡¡¡¡¡¡virtue¡¡¡¡¡¡of¡¡

Euclid's¡¡proposition£»¡¡but¡¡intuitively£»¡¡without¡¡going¡¡through¡¡any¡¡process¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§25£§¡¡£¨1£©¡¡In¡¡order¡¡that¡¡from¡¡these¡¡modes¡¡of¡¡perception¡¡the¡¡best¡¡may¡¡be¡¡

selected£»¡¡it¡¡is¡¡well¡¡that¡¡we¡¡should¡¡briefly¡¡enumerate¡¡the¡¡means¡¡necessary¡¡

for¡¡attaining¡¡our¡¡end¡£¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡¡¡¡¡£¨2£©¡¡To¡¡have¡¡an¡¡exact¡¡knowledge¡¡of¡¡our¡¡nature¡¡which¡¡we¡¡desire¡¡to¡¡

perfect£»¡¡¡¡¡¡¡¡¡¡and¡¡¡¡¡¡to¡¡¡¡¡¡know¡¡¡¡¡¡¡¡¡¡as¡¡¡¡¡¡much¡¡¡¡¡¡¡¡¡¡as¡¡¡¡¡¡is¡¡¡¡needful¡¡¡¡¡¡¡¡¡¡of¡¡¡¡¡¡nature¡¡¡¡¡¡¡¡in¡¡¡¡general¡£¡¡

II¡£¡¡¡¡¡¡To¡¡¡¡¡¡collect¡¡¡¡¡¡¡¡in¡¡¡¡¡¡this¡¡¡¡way¡¡¡¡¡¡¡¡¡¡the¡¡¡¡differences£»¡¡¡¡¡¡¡¡¡¡¡¡the¡¡¡¡agreements£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡and¡¡¡¡¡¡¡¡the¡¡

oppositions¡¡¡¡¡¡of¡¡¡¡¡¡things¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡III¡£¡¡¡¡¡¡To¡¡¡¡¡¡learn¡¡¡¡¡¡thus¡¡¡¡¡¡exactly¡¡¡¡¡¡how¡¡¡¡¡¡far¡¡

they¡¡can¡¡or¡¡cannot¡¡be¡¡modified¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡IV¡£¡¡To¡¡compare¡¡this¡¡result¡¡

with¡¡¡¡¡¡the¡¡¡¡¡¡nature¡¡¡¡¡¡and¡¡¡¡¡¡power¡¡¡¡¡¡of¡¡¡¡¡¡man¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨4£©¡¡¡¡¡¡We¡¡¡¡¡¡shall¡¡¡¡¡¡thus¡¡¡¡¡¡discern¡¡¡¡¡¡the¡¡

highest¡¡degree¡¡of¡¡perfection¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡to¡¡which¡¡man¡¡is¡¡capable¡¡of¡¡attaining¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§26£§¡¡£¨1£©¡¡We¡¡shall¡¡then¡¡be¡¡in¡¡a¡¡position¡¡to¡¡see¡¡which¡¡mode¡¡of¡¡perception¡¡

we¡¡¡¡¡¡ought¡¡¡¡¡¡to¡¡¡¡¡¡choose¡£¡¡¡¡¡¡¡¡¡¡¡¡£¨2£©¡¡¡¡¡¡As¡¡¡¡¡¡to¡¡¡¡¡¡the¡¡¡¡¡¡first¡¡¡¡¡¡mode£»¡¡¡¡¡¡it¡¡¡¡¡¡is¡¡¡¡¡¡evident¡¡¡¡¡¡that¡¡¡¡¡¡from¡¡

hearsay¡¡our¡¡knowledge¡¡must¡¡always¡¡be¡¡uncertain£»¡¡and£»¡¡moreover£»¡¡can¡¡give¡¡

us¡¡no¡¡insight¡¡into¡¡the¡¡essence¡¡of¡¡a¡¡thing£»¡¡as¡¡is¡¡manifest¡¡in¡¡our¡¡illustration£»¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8¡¡


¡­¡¡Page¡¡9¡­

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡On¡¡the¡¡Improvement¡¡of¡¡the¡¡Understanding¡¡



now¡¡one¡¡can¡¡only¡¡arrive¡¡at¡¡knowledge¡¡of¡¡a¡¡thing¡¡through¡¡knowledge¡¡of¡¡its¡¡

essence£»¡¡as¡¡will¡¡hereafter¡¡appear¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨3£©¡¡We¡¡may£»¡¡therefore¡¡clearly¡¡conclude¡¡

that¡¡the¡¡certainty¡¡arising¡¡from¡¡hearsay¡¡cannot¡¡be¡¡scientific¡¡in¡¡its¡¡character¡£¡¡

£¨4£©¡¡For¡¡simple¡¡hearsay¡¡cannot¡¡affect¡¡anyone¡¡whose¡¡understanding¡¡does¡¡not£»¡¡

so¡¡to¡¡speak£»¡¡meet¡¡it¡¡half¡¡way¡£¡¡

¡¡¡¡¡¡¡¡¡¡£§27£§¡¡¡¡¡¡¡¡£¨1£©¡¡The¡¡second¡¡mode¡¡of¡¡perception¡¡£§i£§¡¡cannot¡¡be¡¡said¡¡to¡¡give¡¡us¡¡

the¡¡¡¡¡¡idea¡¡¡¡¡¡of¡¡¡¡¡¡the¡¡¡¡¡¡proportion¡¡¡¡¡¡of¡¡¡¡¡¡which¡¡¡¡¡¡we¡¡¡¡¡¡are¡¡¡¡¡¡in¡¡¡¡¡¡search¡£¡¡¡¡¡¡£¨2£©¡¡¡¡¡¡Moreover¡¡¡¡¡¡its¡¡

results¡¡¡¡¡¡¡¡are¡¡¡¡¡¡very¡¡¡¡¡¡uncertain¡¡¡¡¡¡¡¡and¡¡¡¡¡¡¡¡indefinite£»¡¡¡¡¡¡for¡¡¡¡¡¡we¡¡¡¡¡¡shall¡¡¡¡¡¡never¡¡¡¡¡¡discover¡¡

a
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡