ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
·É¶ÁÖÐÎÄÍø ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

flatland(¸¥À³ÌØÀ¼)-µÚ24ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡62¡¡


¡­¡¡Page¡¡63¡­

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡



there£»¡¡must¡¡needs¡¡have¡¡manifested¡¡himself¡¡to¡¡me£»¡¡or¡¡to¡¡any¡¡Flatlander£»¡¡as¡¡a¡¡

Circle£»¡¡¡¡¡¡at¡¡¡¡¡¡first¡¡¡¡¡¡of¡¡¡¡¡¡full¡¡¡¡¡¡size£»¡¡¡¡¡¡then¡¡¡¡small£»¡¡¡¡¡¡and¡¡¡¡¡¡at¡¡¡¡¡¡last¡¡¡¡¡¡very¡¡¡¡¡¡small¡¡¡¡¡¡indeed£»¡¡

approaching¡¡to¡¡a¡¡Point¡£¡¡But¡¡to¡¡me£»¡¡although¡¡I¡¡saw¡¡the¡¡facts¡¡before¡¡me£»¡¡the¡¡

causes¡¡¡¡¡¡were¡¡¡¡¡¡as¡¡¡¡¡¡dark¡¡¡¡¡¡as¡¡¡¡¡¡ever¡£¡¡All¡¡¡¡¡¡that¡¡¡¡¡¡I¡¡¡¡¡¡could¡¡¡¡¡¡comprehend¡¡¡¡¡¡was£»¡¡¡¡¡¡that¡¡¡¡¡¡the¡¡

Circle¡¡¡¡¡¡had¡¡¡¡¡¡made¡¡¡¡¡¡himself¡¡¡¡¡¡smaller¡¡¡¡¡¡and¡¡¡¡¡¡vanished£»¡¡¡¡and¡¡¡¡¡¡that¡¡he¡¡¡¡¡¡had¡¡now¡¡¡¡¡¡re¡­¡¡

appeared¡¡and¡¡was¡¡rapidly¡¡making¡¡himself¡¡larger¡£¡¡

¡¡¡¡¡¡¡¡¡¡When¡¡¡¡¡¡he¡¡¡¡¡¡regained¡¡¡¡¡¡his¡¡¡¡¡¡original¡¡¡¡¡¡size£»¡¡¡¡¡¡he¡¡¡¡¡¡heaved¡¡¡¡¡¡a¡¡¡¡¡¡deep¡¡¡¡¡¡sigh£»¡¡¡¡¡¡for¡¡¡¡¡¡he¡¡

perceived¡¡by¡¡my¡¡silence¡¡that¡¡I¡¡had¡¡altogether¡¡failed¡¡to¡¡comprehend¡¡him¡£¡¡

And¡¡indeed¡¡I¡¡was¡¡now¡¡inclining¡¡to¡¡the¡¡belief¡¡that¡¡he¡¡must¡¡be¡¡no¡¡Circle¡¡at¡¡

all£»¡¡¡¡¡¡but¡¡¡¡¡¡some¡¡¡¡¡¡extremely¡¡¡¡¡¡clever¡¡¡¡¡¡juggler£»¡¡¡¡¡¡or¡¡¡¡¡¡else¡¡¡¡¡¡that¡¡¡¡¡¡the¡¡¡¡¡¡old¡¡¡¡¡¡wives'¡¡¡¡¡¡tales¡¡

were¡¡¡¡¡¡true£»¡¡¡¡¡¡and¡¡¡¡¡¡that¡¡¡¡¡¡after¡¡¡¡¡¡all¡¡¡¡¡¡there¡¡¡¡¡¡were¡¡¡¡¡¡such¡¡¡¡¡¡people¡¡¡¡¡¡as¡¡¡¡¡¡Enchanters¡¡¡¡¡¡and¡¡

Magicians¡£¡¡

¡¡¡¡¡¡¡¡¡¡After¡¡¡¡¡¡¡¡a¡¡¡¡long¡¡¡¡¡¡¡¡pause¡¡¡¡¡¡¡¡he¡¡¡¡muttered¡¡¡¡¡¡¡¡¡¡to¡¡¡¡himself£»¡¡¡¡¡¡¡¡¡¨One¡¡¡¡¡¡¡¡¡¡resource¡¡¡¡¡¡¡¡alone¡¡

remains£»¡¡if¡¡I¡¡am¡¡not¡¡to¡¡resort¡¡to¡¡action¡£¡¡I¡¡must¡¡try¡¡the¡¡method¡¡of¡¡Analogy¡£¡¨¡¡

Then¡¡¡¡¡¡¡¡¡¡¡¡followed¡¡¡¡¡¡¡¡¡¡a¡¡¡¡still¡¡¡¡longer¡¡¡¡¡¡¡¡silence£»¡¡¡¡¡¡after¡¡¡¡¡¡which¡¡¡¡¡¡¡¡he¡¡¡¡¡¡continued¡¡¡¡¡¡¡¡¡¡¡¡our¡¡

dialogue¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Tell¡¡me£»¡¡Mr¡£¡¡Mathematician£»¡¡if¡¡a¡¡Point¡¡moves¡¡Northward£»¡¡and¡¡

leaves¡¡a¡¡luminous¡¡wake£»¡¡what¡¡name¡¡would¡¡you¡¡give¡¡to¡¡the¡¡wake£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡A¡¡straight¡¡Line¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡And¡¡a¡¡straight¡¡Line¡¡has¡¡how¡¡many¡¡extremities£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡Two¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Now¡¡conceive¡¡the¡¡Northward¡¡straight¡¡Line¡¡moving¡¡parallel¡¡to¡¡

itself£»¡¡East¡¡and¡¡West£»¡¡so¡¡that¡¡every¡¡point¡¡in¡¡it¡¡leaves¡¡behind¡¡it¡¡the¡¡wake¡¡of¡¡

a¡¡straight¡¡Line¡£¡¡What¡¡name¡¡will¡¡you¡¡give¡¡to¡¡the¡¡Figure¡¡thereby¡¡formed£¿¡¡

We¡¡¡¡¡¡will¡¡¡¡¡¡suppose¡¡¡¡¡¡that¡¡¡¡¡¡it¡¡¡¡¡¡moves¡¡¡¡¡¡through¡¡¡¡¡¡a¡¡¡¡¡¡distance¡¡¡¡¡¡equal¡¡¡¡¡¡to¡¡¡¡¡¡the¡¡¡¡¡¡original¡¡

straight¡¡line¡£¡¡What¡¡name£»¡¡I¡¡say£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡A¡¡square¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡And¡¡how¡¡many¡¡sides¡¡has¡¡a¡¡Square£¿¡¡How¡¡many¡¡angles£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡Four¡¡sides¡¡and¡¡four¡¡angles¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Now¡¡stretch¡¡your¡¡imagination¡¡a¡¡little£»¡¡and¡¡conceive¡¡a¡¡Square¡¡

in¡¡Flatland£»¡¡moving¡¡parallel¡¡to¡¡itself¡¡upward¡£¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡What£¿¡¡Northward£¿¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡No£»¡¡not¡¡Northward£»¡¡upward£»¡¡out¡¡of¡¡Flatland¡¡altogether¡£¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡63¡¡


¡­¡¡Page¡¡64¡­

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡



¡¡¡¡¡¡¡¡¡¡If¡¡it¡¡moved¡¡Northward£»¡¡the¡¡Southern¡¡points¡¡in¡¡the¡¡Square¡¡would¡¡have¡¡

to¡¡move¡¡through¡¡the¡¡positions¡¡previously¡¡occupied¡¡by¡¡the¡¡Northern¡¡points¡£¡¡

But¡¡that¡¡is¡¡not¡¡my¡¡meaning¡£¡¡

¡¡¡¡¡¡¡¡¡¡I¡¡mean¡¡that¡¡every¡¡Point¡¡in¡¡youfor¡¡you¡¡are¡¡a¡¡Square¡¡and¡¡will¡¡serve¡¡the¡¡

purpose¡¡of¡¡my¡¡illustrationevery¡¡Point¡¡in¡¡you£»¡¡that¡¡is¡¡to¡¡say¡¡in¡¡what¡¡you¡¡

call¡¡your¡¡inside£»¡¡is¡¡to¡¡pass¡¡upwards¡¡through¡¡Space¡¡in¡¡such¡¡a¡¡way¡¡that¡¡no¡¡

Point¡¡¡¡¡¡shall¡¡¡¡¡¡pass¡¡¡¡¡¡through¡¡¡¡¡¡the¡¡¡¡¡¡position¡¡¡¡¡¡previously¡¡¡¡¡¡occupied¡¡¡¡¡¡by¡¡¡¡¡¡any¡¡¡¡¡¡other¡¡

Point£»¡¡but¡¡each¡¡Point¡¡shall¡¡describe¡¡a¡¡straight¡¡Line¡¡of¡¡its¡¡own¡£¡¡This¡¡is¡¡all¡¡in¡¡

accordance¡¡with¡¡Analogy£»¡¡surely¡¡it¡¡must¡¡be¡¡clear¡¡to¡¡you¡£¡¡

¡¡¡¡¡¡¡¡¡¡Restraining¡¡my¡¡impatiencefor¡¡I¡¡was¡¡now¡¡under¡¡a¡¡strong¡¡temptation¡¡

to¡¡rush¡¡blindly¡¡at¡¡my¡¡Visitor¡¡and¡¡to¡¡precipitate¡¡him¡¡into¡¡Space£»¡¡or¡¡out¡¡of¡¡

Flatland£»¡¡anywhere£»¡¡so¡¡that¡¡I¡¡could¡¡get¡¡rid¡¡of¡¡himI¡¡replied£º¡¡

¡¡¡¡¡¡¡¡¡¡¡¨And¡¡what¡¡may¡¡be¡¡the¡¡nature¡¡of¡¡the¡¡Figure¡¡which¡¡I¡¡am¡¡to¡¡shape¡¡out¡¡by¡¡

this¡¡¡¡¡¡motion¡¡¡¡¡¡which¡¡¡¡¡¡you¡¡¡¡¡¡are¡¡¡¡¡¡pleased¡¡¡¡¡¡to¡¡¡¡¡¡denote¡¡¡¡¡¡by¡¡¡¡¡¡the¡¡¡¡¡¡word¡¡¡¡¡¡¡®upward'£¿¡¡¡¡¡¡I¡¡

presume¡¡it¡¡is¡¡describable¡¡in¡¡the¡¡language¡¡of¡¡Flatland¡£¡¨¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡¡¡¡¡¡¡¡¡Oh£»¡¡¡¡¡¡¡¡certainly¡£¡¡¡¡¡¡It¡¡¡¡is¡¡¡¡all¡¡¡¡plain¡¡¡¡¡¡and¡¡¡¡¡¡simple£»¡¡¡¡¡¡¡¡and¡¡¡¡¡¡in¡¡¡¡¡¡strict¡¡

accordance¡¡¡¡¡¡with¡¡Analogyonly£»¡¡¡¡¡¡by¡¡¡¡¡¡the¡¡¡¡¡¡way£»¡¡¡¡¡¡you¡¡¡¡¡¡must¡¡¡¡¡¡not¡¡¡¡¡¡speak¡¡¡¡¡¡of¡¡¡¡¡¡the¡¡

result¡¡as¡¡being¡¡a¡¡Figure£»¡¡but¡¡as¡¡a¡¡Solid¡£¡¡But¡¡I¡¡will¡¡describe¡¡it¡¡to¡¡you¡£¡¡Or¡¡

rather¡¡not¡¡I£»¡¡but¡¡Analogy¡£¡¡

¡¡¡¡¡¡¡¡¡¡We¡¡began¡¡with¡¡a¡¡single¡¡Point£»¡¡which¡¡of¡¡coursebeing¡¡itself¡¡a¡¡Point¡¡

has¡¡only¡¡ONE¡¡terminal¡¡Point¡£¡¡

¡¡¡¡¡¡¡¡¡¡One¡¡Point¡¡produces¡¡a¡¡Line¡¡with¡¡TWO¡¡terminal¡¡Points¡£¡¡

¡¡¡¡¡¡¡¡¡¡One¡¡Line¡¡produces¡¡a¡¡Square¡¡with¡¡FOUR¡¡terminal¡¡Points¡£¡¡

¡¡¡¡¡¡¡¡¡¡Now¡¡you¡¡can¡¡give¡¡yourself¡¡the¡¡answer¡¡to¡¡your¡¡own¡¡question£º¡¡1£»¡¡2£»¡¡4£»¡¡

are¡¡evidently¡¡in¡¡Geometrical¡¡Progression¡£¡¡What¡¡is¡¡the¡¡next¡¡number£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡Eight¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Exactly¡£¡¡The¡¡one¡¡Square¡¡produces¡¡a¡¡SOMETHING¡­WHICH¡­¡¡

YOU¡­¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡DO¡­NOT¡­AS¡­YET¡­KNOW¡­A¡­NAME¡­FOR¡­BUT¡­WHICH¡­WE¡­¡¡

CALL¡­A¡­CUBE¡¡with¡¡EIGHT¡¡terminal¡¡Points¡£¡¡Now¡¡are¡¡you¡¡convinced£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡¡¡¡¡And¡¡¡¡¡¡has¡¡¡¡¡¡this¡¡¡¡¡¡Creature¡¡¡¡¡¡sides£»¡¡¡¡¡¡as¡¡¡¡¡¡well¡¡¡¡¡¡as¡¡¡¡¡¡Angles¡¡¡¡¡¡or¡¡¡¡¡¡what¡¡¡¡¡¡you¡¡¡¡¡¡call¡¡

¡¨terminal¡¡Points¡¨£¿¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Of¡¡course£»¡¡and¡¡all¡¡according¡¡to¡¡Analogy¡£¡¡But£»¡¡by¡¡the¡¡way£»¡¡not¡¡

what¡¡¡¡¡¡¡¡YOU¡¡¡¡¡¡¡¡¡¡¡¡call¡¡¡¡sides£»¡¡¡¡but¡¡¡¡what¡¡¡¡¡¡¡¡WE¡¡¡¡¡¡¡¡call¡¡¡¡sides¡£¡¡¡¡You¡¡¡¡¡¡¡¡would¡¡¡¡¡¡¡¡call¡¡¡¡them¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡64¡¡


¡­¡¡Page¡¡65¡­

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡



SOLIDS¡£¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡And¡¡how¡¡many¡¡solids¡¡or¡¡sides¡¡will¡¡appertain¡¡to¡¡this¡¡Being¡¡whom¡¡I¡¡

am¡¡to¡¡generate¡¡by¡¡the¡¡motion¡¡of¡¡my¡¡inside¡¡in¡¡an¡¡¡¨upward¡¨¡¡direction£»¡¡and¡¡

whom¡¡you¡¡call¡¡a¡¡Cube£¿¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡¡¡¡¡How¡¡¡¡¡¡can¡¡¡¡¡¡you¡¡¡¡¡¡ask£¿¡¡¡¡¡¡And¡¡¡¡¡¡you¡¡¡¡¡¡a¡¡¡¡¡¡mathematician£¡¡¡¡¡¡¡The¡¡¡¡¡¡side¡¡¡¡¡¡of¡¡

anything¡¡¡¡¡¡is¡¡¡¡¡¡always£»¡¡¡¡¡¡if¡¡¡¡¡¡I¡¡¡¡¡¡may¡¡¡¡¡¡so¡¡¡¡¡¡say£»¡¡¡¡¡¡one¡¡¡¡¡¡Dimension¡¡¡¡¡¡behind¡¡¡¡¡¡the¡¡¡¡¡¡thing¡£¡¡

Consequently£»¡¡as¡¡there¡¡is¡¡no¡¡Dimension¡¡behind¡¡a¡¡Point£»¡¡a¡¡Point¡¡has¡¡0¡¡sides£»¡¡

a¡¡Line£»¡¡if¡¡I¡¡may¡¡so¡¡say£»¡¡has¡¡2¡¡sides¡¡£¨for¡¡the¡¡points¡¡of¡¡a¡¡Line¡¡may¡¡be¡¡called¡¡

by¡¡courtesy£»¡¡its¡¡sides£©£»¡¡a¡¡Square¡¡has¡¡4¡¡sides£»¡¡0£»¡¡2£»¡¡4£»¡¡what¡¡Progression¡¡do¡¡

you¡¡call¡¡that£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡Arithmetical¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡And¡¡what¡¡is¡¡the¡¡next¡¡number£¿¡¡

¡¡¡¡¡¡¡¡¡¡I¡£¡¡Six¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Exactly¡£¡¡Then¡¡you¡¡see¡¡you¡¡have¡¡answered¡¡your¡¡own¡¡question¡£¡¡

The¡¡Cube¡¡which¡¡you¡¡will¡¡generate¡¡will¡¡be¡¡bounded¡¡by¡¡six¡¡sides£»¡¡that¡¡is¡¡to¡¡

say£»¡¡six¡¡of¡¡your¡¡insides¡£¡¡You¡¡see¡¡it¡¡all¡¡now£»¡¡eh£¿¡¡

¡¡¡¡¡¡¡¡¡¡¡¨Monster£»¡¨¡¡I¡¡shrieked£»¡¡¡¨be¡¡thou¡¡juggler£»¡¡enchanter£»¡¡dream£»¡¡or¡¡devil£»¡¡no¡¡

more¡¡¡¡¡¡will¡¡¡¡¡¡I¡¡¡¡¡¡endure¡¡¡¡¡¡thy¡¡¡¡¡¡mockeries¡£¡¡¡¡¡¡Either¡¡¡¡¡¡thou¡¡¡¡¡¡or¡¡¡¡¡¡I¡¡¡¡¡¡must¡¡¡¡¡¡perish¡£¡¨¡¡¡¡¡¡And¡¡

saying¡¡these¡¡words¡¡I¡¡precipitated¡¡myself¡¡upon¡¡him¡£¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡65¡¡


¡­¡¡Page¡¡66¡­

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Flatland¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡SECTION¡¡17¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡How¡¡the¡¡Sphere£»¡¡having¡¡in¡¡vain¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡tried¡¡words£»¡¡resorted¡¡to¡¡deeds¡¡



¡¡¡¡¡¡¡¡¡¡¡¡¡¡It¡¡was¡¡in¡¡vain¡£¡¡I¡¡brought¡¡my¡¡hardest¡¡right¡¡angle¡¡into¡¡violent¡¡collision¡¡

with¡¡¡¡¡¡¡¡the¡¡¡¡¡¡Stranger£»¡¡¡¡¡¡¡¡pressing¡¡¡¡¡¡¡¡on¡¡¡¡¡¡him¡¡¡¡¡¡¡¡with¡¡¡¡¡¡a¡¡¡¡force¡¡¡¡¡¡sufficient¡¡¡¡¡¡¡¡to¡¡¡¡have¡¡

destroyed¡¡¡¡¡¡¡¡¡¡¡¡any¡¡¡¡¡¡¡¡ordinary¡¡¡¡¡¡¡¡¡¡Circle£º¡¡¡¡¡¡but¡¡¡¡¡¡¡¡I¡¡¡¡could¡¡¡¡¡¡¡¡feel¡¡¡¡¡¡him¡¡¡¡¡¡¡¡slowly¡¡¡¡¡¡¡¡and¡¡

unarrestably¡¡slipping¡¡from¡¡my¡¡contact£»¡¡not¡¡edging¡¡to¡¡the¡¡right¡¡nor¡¡to¡¡the¡¡

left£»¡¡but¡¡¡¡¡¡moving¡¡somehow¡¡out¡¡¡¡¡¡of¡¡the¡¡¡¡¡¡world£»¡¡¡¡and¡¡vanishing¡¡¡¡¡¡into¡¡¡¡¡¡nothing¡£¡¡

Soon¡¡there¡¡was¡¡a¡¡blank¡£¡¡But¡¡still¡¡I¡¡heard¡¡the¡¡Intruder's¡¡voice¡£¡¡

¡¡¡¡¡¡¡¡¡¡Sphere¡£¡¡Why¡¡will¡¡you¡¡refuse¡¡to¡¡listen¡¡to¡¡reason£¿¡¡I¡¡had¡¡hoped¡¡to¡¡find¡¡in¡¡

youas¡¡being¡¡a¡¡man¡¡of¡¡sense¡¡and¡¡an¡¡accomplished¡¡mathematician¡¡a¡¡fit¡¡

apostle¡¡¡¡¡¡for¡¡¡¡¡¡the¡¡¡¡¡¡Gospel¡¡¡¡¡¡of¡¡¡¡¡¡the¡¡Three¡¡¡¡¡¡Dimensions£»¡¡¡¡¡¡which¡¡¡¡¡¡I¡¡¡¡¡¡am¡¡¡¡allowed¡¡¡¡¡¡to¡¡

preach¡¡once¡¡only¡¡in¡¡a¡¡thousand¡¡years£º¡¡but¡¡now¡¡I¡¡know¡¡not¡¡how¡¡to¡¡convince¡¡

you¡£¡¡Stay£»¡¡I¡¡have¡¡it¡£¡¡Deeds£»¡¡and¡¡
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡