按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
(a) Positing Reflection
(b) External Reflection
(c) Determining Reflection
Chapter 2 The Essentialities or Determinations of Reflection
Reflection is determinate reflection; hence essence is determinate essence; or it is an essentiality。
Reflection is the showing of the illusory being of essence within essence itself。 Essence; as
infinite return…into…self; is not immediate but negative simplicity; it is a movement through distinct
moments; absolute self…mediation。 But it reflects itself into these its moments which consequently
are themselves determinations reflected into themselves。
Essence is at first; simple self…relation; pure identity。 This is its determination; but as such it is
rather the absence of any determination。
Secondly; the proper determination is difference; a difference that is; on the one hand; external or
indifferent; diversity in general; and on the other hand; is opposed diversity or opposition。
Thirdly; as contradiction; the opposition is reflected into itself and withdrawn into its ground。
Remark: The Categories of Reflection
A IDENTITY
B DIFFERENCE
(a) Absolute Difference
(b) Diversity
Remark: The Law of Diversity
Diversity; like identity; is expressed in its own law。 And both these laws are held apart as
indifferently different; so that each is valid on its own without respect to the other。
All things are different; or: there are no two things like each other。 This proposition is; in fact;
opposed to the law of identity; for it declares: A is distinctive; therefore A is also not A; or: A is
unlike something else; so that it is not simply A but rather a specific A。 A's place in the law of
identity can be taken by any other substrate; but A as distinctive 'als Ungleiches' can no longer
be exchanged with any other。 True; it is supposed to be distinctive; not from itself; but only from
another; but this distinctiveness is its own determination。 As self…identical A; it is indeterminate;
but as determinate it is the opposite of this; it no longer has only self…identity; but also a negation
and therefore a difference of itself from itself within it。
That everything is different from everything else is a very superfluous proposition; for things in the
plural immediately involve manyness and wholly indeterminate diversity。 But the proposition that
no two things are completely like each other; expresses more; namely; determinate difference。
Two things are not merely two — numerical manyness is only one…and…the…sameness — but they
are different through a determination。 Ordinary thinking is struck by the proposition that no two
things are like each other — as in the story of how Leibniz propounded it at court and caused the
ladies to look at the leaves of trees to see whether they could find two alike。 Happy times for
metaphysics when it was the occupation of courtiers and the testing of its propositions called for
no more exertion than to compare leaves! The reason why this proposition is striking lies in what
has been said; that two; or numerical manyness; does not contain any determinate difference and
that diversity as such; in its abstraction; is at first indifferent to likeness and unlikeness。 Ordinary
thinking; even when it goes on to a determination of diversity; takes these moments themselves to
be mutually indifferent; so that one without the other; the mere likeness of things without
unlikeness; suffices to determine whether the things are different even when they are only a
numerical many; not unlike; but simply different without further qualification。 The law of diversity;
on the other hand; asserts that things are different from one another through unlikeness; that the
determination of unlikeness belongs to them just as much as that of likeness; for determinate
difference is constituted only by both together。
Now this proposition that unlikeness must be predicated of all things; surely stands in need of
proof; it cannot be set up as an immediate proposition; for even in the ordinary mode of cognition
a proof is demanded of the combination of different determinations in a synthetic proposition; or
else the indication of a third term in which they are mediated。 This proof would have to exhibit the
passage of identity into difference; and then the passage of this into determinate difference; into
unlikeness。 But as a rule this is not done。 We have found that diversity or external difference is; in
truth; reflected into itself; is difference in its own self; that the indifferent subsistence of the diverse
is a mere positedness and therefore not an external; indifferent difference; but a single relation of
the two moments。
This involves the dissolution and nullity of the law of diversity。 Two things are not perfectly alike;
so they are at once alike and unlike; alike;;simply because they are things; or just two; without
further qualification…for each is a thing and a one; no less than the other…but they are unlike ex
hypothesi。 We are therefore presented with this determination; that both moments; likeness and
unlikeness; are different in one and the same thing; or that the difference; while falling asunder; is at
the same time one and the same relation。 This has therefore passed over Into opposition。
The togetherness of both predicates is held asunder by the 'in so far'; namely; when it is said that
two things are alike in so far as they are not unlike; or on the one side or in one respect are alike;
but on another side or in another respect are unalike。 The effect of this is to remove the unity of
likeness and unlikeness from the thing; and to adhere to what would be the thing's own reflection
and the merely implicit reflection of likeness and unlikeness; as a reflection external to the thing。
But it is this reflection that; in one and the same activity; distinguishes the two sides of likeness
and unlikeness; hence contains both in one activity; lets the one show; be reflected; in the other。
But the usual tenderness for things; whose only care is that they do not contradict themselves;
forgets here as elsewhere that in this way the contradiction is not resolved but merely shifted
elsewhere; into subjective or external reflection generally; and this reflection in fact contains in
one unity as sublated and mutually referred; the two moments which are enunciated by this
removal and displacement as a mere positedness。
(c) Opposition
C CONTRADICTION
Remark 1。 Unity of Positive and Negative
Remark 2。 The Law of the Excluded Middle
Remark 3。 The Law of Contradiction
Chapter 3 Ground
The Law of Ground
A ABSOLUTE GROUND
(a) Form and Essence
(b) Form and Matter
(c) Form and Content
B DETERMINATE GROUND
(a) Formal Ground
Remark: Formal Method of Explanation From Tautological Grounds
(b) Real Ground
Remark: Formal Method of Explanation From a Ground Distinct From That Which is
Grounded
(c) The Complete Ground
C CONDITION
(a) The Relatively Unconditioned
(b) The Absolutely Unconditioned
(c) The Emergence of the Fact into Existence
When all the conditions