按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
对科学界来说,这可是一件大事。欧洲有名的科学家都赶来这里,聆听那位德高望重,然而却以顽固出名的老头子——开尔文男爵(Lord
Kelvin)的发言。
开尔文的这篇演讲名为《在热和光动力理论上空的19世纪乌云》。当时已经76岁,白发苍苍的他用那特有的爱尔兰口音开始了发言,他的第一
段话是这么说的:
“动力学理论断言,热和光都是运动的方式。但现在这一理论的优美性和明晰性却被两朵乌云遮蔽,显得黯然失色了……”(‘The beauty
and clearness of the dynamical theory; which asserts heat and light to be modes of motion; is at present obscured by two
clouds。’)
这个“乌云”的比喻后来变得如此出名,以致于在几乎每一本关于物理史的书籍中都被反复地引用,成了一种模式化的陈述。联系到当时人们
对物理学大一统的乐观情绪,许多时候这个表述又变成了“在物理学阳光灿烂的天空中漂浮着两朵小乌云”。这两朵著名的乌云,分别指的是
经典物理在光以太和麦克斯韦-玻尔兹曼能量均分学说上遇到的难题。再具体一些,指的就是人们在迈克尔逊-莫雷实验和黑体辐射研究中的
困境。
迈克尔逊-莫雷实验的用意在于探测光以太对于地球的漂移速度。在人们当时的观念里,以太代表了一个绝对静止的参考系,而地球穿过以太
在空间中运动,就相当于一艘船在高速行驶,迎面会吹来强烈的“以太风”。迈克尔逊在1881年进行了一个实验,想测出这个相对速度,但结
果并不十分令人满意。于是他和另外一位物理学家莫雷合作,在1886年安排了第二次实验。这可能是当时物理史上进行过的最精密的实验了:
他们动用了最新的干涉仪,为了提高系统的灵敏度和稳定性,他们甚至多方筹措弄来了一块大石板,把它放在一个水银槽上,这样就把干扰的
因素降到了最低。
然而实验结果却让他们震惊和失望无比:两束光线根本就没有表现出任何的时间差。以太似乎对穿越于其中的光线毫无影响。迈克尔逊和莫雷
不甘心地一连观测了四天,本来甚至想连续观测一年以确定地球绕太阳运行四季对以太风造成的差别,但因为这个否定的结果是如此清晰而不
容质疑,这个计划也被无奈地取消了。
迈克尔逊-莫雷实验是物理史上最有名的“失败的实验”。它当时在物理界引起了轰动,因为以太这个概念作为绝对运动的代表,是经典物理
学和经典时空观的基础。而这根支撑着经典物理学大厦的梁柱竟然被一个实验的结果而无情地否定,那马上就意味着整个物理世界的轰然崩塌
。不过,那时候再悲观的人也不认为,刚刚取得了伟大胜利,到达光辉顶峰的经典物理学会莫名其妙地就这样倒台,所以人们还是提出了许多
折衷的办法,爱尔兰物理学家费兹杰惹(Gee FitzGerald)和荷兰物理学家洛伦兹(Hendrik Antoon Lorentz)分别独立地提出了一种假说
,认为物体在运动的方向上会发生长度的收缩,从而使得以太的相对运动速度无法被测量到。这些假说虽然使得以太的概念得以继续保留,但
业已经对它的意义提出了强烈的质问,因为很难想象,一个只具有理论意义的“假设物理量”究竟有多少存在的必要。开尔文所说的“第一朵
乌云”就是在这个意义上提出来的,不过他认为长度收缩的假设无论如何已经使人们“摆脱了困境”,所要做的只是修改现有理论以更好地使
以太和物质的相互作用得以自洽罢了。
至于“第二朵乌云”,指的是黑体辐射实验和理论的不一致。它在我们的故事里将起到十分重要的作用,所以我们会在后面的章节里仔细地探
讨这个问题。在开尔文发表演讲的时候,这个问题仍然没有任何能够得到解决的迹象。不过开尔文对此的态度倒也是乐观的,因为他本人就并
不相信玻尔兹曼的能量均分学说,他认为要驱散这朵乌云,最好的办法就是否定玻尔兹曼的学说(而且说老实话,玻尔兹曼的分子运动理论在
当时的确还是有着巨大的争议,以致于这位罕见的天才苦闷不堪,精神出现了问题。当年玻尔兹曼就尝试自杀而未成,但他终于在6年后的一片
小森林里亲手结束了自己的生命,留下了一个科学史上的大悲剧)。
年迈的开尔文站在讲台上,台下的听众对于他的发言给予热烈的鼓掌。然而当时,他们中间却没有一个人(包括开尔文自己)会了解,这两朵
小乌云对于物理学来说究竟意味着什么。他们绝对无法想象,正是这两朵不起眼的乌云马上就要给这个世界带来一场前所未有的狂风暴雨,电
闪雷鸣,并引发可怕的大火和洪水,彻底摧毁现在的繁华美丽。他们也无法知道,这两朵乌云很快就要把他们从豪华舒适的理论宫殿中驱赶出
来,放逐到布满了荆棘和陷阱的原野里去过上几十年颠沛流离的生活。他们更无法预见,正是这两朵乌云,终究会给物理学带来伟大的新生,
在烈火和暴雨中实现涅磐,并重新建造起两幢更加壮观美丽的城堡来。
第一朵乌云,最终导致了相对论革命的爆发。
第二朵乌云,最终导致了量子论革命的爆发。
今天看来,开尔文当年的演讲简直像一个神秘的谶言,似乎在冥冥中带有一种宿命的意味。科学在他的预言下打了一个大弯,不过方向却是完
全出乎开尔文意料的。如果这位老爵士能够活到今天,读到物理学在新世纪里的发展历史,他是不是会为他当年的一语成谶而深深震惊,在心
里面打一个寒噤呢?
*********
饭后闲话:伟大的“意外”实验
我们今天来谈谈物理史上的那些著名的“意外”实验。用“意外”这个词,指的是实验未能取得预期的成果,可能在某种程度上,也可以称为
“失败”实验吧。
我们在上面已经谈到了迈克尔逊-莫雷实验,这个实验的结果是如此地令人震惊,以致于它的实验者在相当的一段时期里都不敢相信自己结果
的正确性。但正是这个否定的证据,最终使得“光以太”的概念寿终正寝,使得相对论的诞生成为了可能。这个实验的失败在物理史上却应该
说是一个伟大的胜利,科学从来都是只相信事实的。
近代科学的历史上,也曾经有过许多类似的具有重大意义的意外实验。也许我们可以从拉瓦锡(AL Laroisier)谈起。当时的人们普遍相信,
物体燃烧是因为有“燃素”离开物体的结果。但是1774年的某一天,拉瓦锡决定测量一下这种“燃素”的具体重量是多少。他用他的天平称量
了一块锡的重量,随即点燃它。等金属完完全全地烧成了灰烬之后,拉瓦锡小心翼翼地把每一粒灰烬都收集起来,再次称量了它的重量。
结果使得当时的所有人都瞠目结舌。按照燃素说,燃烧后的灰烬应该比燃烧前要轻。退一万步,就算燃素完全没有重量,也应该一样重。可是
拉瓦锡的天平却说:灰烬要比燃烧前的金属重,测量燃素重量成了一个无稽之谈。然而拉瓦锡在吃惊之余,却没有怪罪于自己的天平,而是将
怀疑的眼光投向了燃素说这个庞然大物。在他的推动下,近代化学终于在这个体系倒台的轰隆声中建立了起来。
到了1882年,实验上的困难同样开始困扰剑桥大学的化学教授瑞利(J。W。S Rayleigh)。他为了一个课题,需要精确地测量各种气体的比重。
然而在氮的问题上,瑞利却遇到了麻烦。事情是这样的:为了保证结果的准确,瑞利采用了两种不同的方法来分离气体。一种是通过化学家们
熟知的办法,用氨气来制氮,另一种是从普通空气中,尽量地除去氧、氢、水蒸气等别的气体,这样剩下的就应该是纯氮气了。然而瑞利却苦
恼地发现两者的重量并不一致,后者要比前者重了千分之二。
虽然是一个小差别,但对于瑞利这样的讲究精确的科学家来说是不能容忍的。为了消除这个差别,他想尽了办法,几乎检查了他所有的仪器,
重复了几十次实验,但是这个千分之二的差别就是顽固地存在在那里,随着每一次测量反而更加精确起来。这个障碍使得瑞利几乎要发疯,在
百般无奈下他写信给另一位化学家拉姆塞(William Ramsay)求救。后者敏锐地指出,这个重量差可能是由于空气里混有了一种不易察觉的重
气体而造成的。在两者的共同努力下,氩气(Ar)终于被发现了,并最终导致了整个惰性气体族的发现,成为了元素周期表存在的一个主要证
据。
另一个值得一谈的实验是1896年的贝克勒尔(Antoine Herni Becquerel)做出的。当时X射线刚被发现不久,人们对它的来由还不是很清楚。
有人提出太阳光照射荧光物质能够产生X射线,于是贝克勒尔对此展开了研究,他选了一种铀的氧化物作为荧光物质,把它放在太阳下暴晒,结
果发现它的确使黑纸中的底片感光了,于是他得出初步结论:阳光照射荧光物质的确能产生X射线。
但是,正当他要进一步研究时,意外的事情发生了。天气转阴,乌云一连几天遮蔽了太阳。贝克勒尔只好把他的全套实验用具,包括底片和铀
盐全部放进了保险箱里。然而到了第五天,天气仍然没有转晴的趋势,贝克勒尔忍不住了,决定把底片冲洗出来再说。铀盐曾受了一点微光的
照射,不管如何在底片上应该留下一些模糊的痕迹吧?
然而,在拿到照片时,贝克勒尔经历了每个科学家都梦寐以求的那种又惊又喜的时刻。他的脑中一片晕眩:底片曝光得是如此彻底,上面的花
纹是如此地清晰,甚至比强烈阳光下都要超出一百倍。这是一个历史性的时刻,元素的放射性第一次被人们发现了,虽然是在一个戏剧性的场
合下。贝克勒尔的惊奇,终究打开了通向原子内部的大门,使得人们很快就看