友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
飞读中文网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

西方哲学史-第202章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




    我以为杜威博士的世界是一个人类占据想像力的世界;天文学上的宇宙他当然承认它存在,但是在大多时候被忽视

    ①本书作者系两度任维多利亚女王的首相的罗素伯爵约翰。罗素之孙,1931年其兄逝世后,依法律规定袭伯爵爵号。——译者

 441

    044卷三 近代哲学

    了。他的哲学是一种权能哲学,固然并不是像尼采哲学那样的个人权能的哲学;他感觉宝贵的是社会的权能。我们对自然力量的新支配能力,比这种能力至今仍受的限制给某些人造成更深的印象;我以为正是工具主义哲学中的这种社会权能要素使得工具主义对那些人有了诱力。

    人类对待非人的环境所抱的态度,在不同时代曾有很大的差别。希腊人怕傲慢,信仰一位甚至高于宙斯的必然之神或命运之神,所以希腊人小心避免那种他们觉得会是对宇宙不逊的事情。中世纪时把恭顺做得更远甚于以前:对神谦卑是基督徒的首要义务。独创性被这种态度束缚住,伟大的创见几乎是不可能有的。文艺复兴恢复了人类的自尊,但又让自尊达到了造成无政府状态与灾殃的程度。文艺复兴的成绩大部分被宗教改革运动和反宗教改革运动打消。但是,近代技术虽不全然适于文艺复兴时期的倨傲的个人,却使人类社会的集体能力之感复活了。已往过于谦卑的人类,开始把自己当作几乎是个神。意大利的实用主义者帕比尼①就极力主张用“模仿神”代替“模仿基督”

    ②。

    在所有这些事情上,我感到一种严重的危险,一种不妨叫作“宇宙式的不虔诚”的危险。把“真理”看成取决于事实的东西,事实大多在人力控制以外,这个真理概念向来是

    ①帕比尼(GiovaniPapini,181—1956)

    ,意大利哲学家、历史学家和小说家。——译者②德意志神秘思想家托马司。阿。坎皮斯(ThomasaKempis,1380左右—1471)有一本著作叫《模仿基督》(DeImitationeChristi)。——译者

 442

    第二篇 从卢梭到现代14

    哲学迄今教导谦卑的必要要素的一个方法。这个对自傲的抑制一撤除,在奔向某种病狂的道路上便更进一步——那种病狂就是随着费希特而侵入哲学领域的权能陶醉,这是近代人不管是否哲学家都容易陷入的一种陶醉。我相信这种陶醉是当代最大的危险,任何一种哲学,不论多么无意地助长这种陶醉,就等于增大社会巨祸的危险。

    第三十一章 逻辑分析哲学

    在哲学中,自从毕达哥拉斯时代以来,一向存在着两派人的一个对立局面:一派人的思想主要是在数学的启发下产生的,另一派人受经验科学的影响比较深。柏拉图、托马斯。阿奎那、斯宾诺莎和康德属于不妨叫作数学派的那一派,德谟克里特、亚里士多德、以及洛克以降的近代经验主义者们属于相反一派。在现代兴起了一个哲学派别,着手消除数学原理中的毕达哥拉斯主义,并且开始把经验主义和注意人类知识中的演绎部分结合起来。这个学派的目标不及过去大多数哲学家的目标堂皇壮观,但是它的一些成就却像科学家的成就一样牢靠。

    数学家们着手消除了自己学科里的种种谬误和粗率的推理,上述这派哲学的根源便在于数学家所取得的那些成绩。

    十七世纪的大数学家们都是很乐观的,急于求得速决的结果;因

 443

    244卷三 近代哲学

    此,他们听任解析几何与无穷小算法①停留在不稳固的基础上。莱布尼兹相信有实际的无穷小,但是这个信念虽然适合他的形而上学,在数学上是没有确实根据的。十九世纪中叶以后不久,魏尔施特拉斯指明如何不借助无穷小而建立微积分学,因而终于使微积分学从逻辑上讲稳固了。随后又有盖奥尔克。康托,他发展了连续性和无穷数的理论。

    “连续性”

    在他下定义以前向来是个含混字眼,对于黑格尔之流想把形而上学的混浊想法弄进数学里去的哲学家们是很方便的。康托赋予这个词一个精确含义,并且说明了他所定义的那种连续性正是数学家和物理学家需要的概念。通过这种手段,使大量的神秘玄想,例如柏格森的神秘玄想,变得陈旧过时了。

    康托也克服了关于无穷数的那些长期存在的逻辑难题。

    拿从1起的整数系列来说,这些数有多少个呢?很明显,这个数目不是有穷的。到一千为止,有一千个数;到一百万为止,有一百万个数。无论你提出一个什么有穷的数,显然有比这更多的数,因为从1到该数为止,整整有那么多数目的数,然后又有别的更大的数。所以,有穷整数的数目必定是一个无穷数。可是现在出了一个奇妙事实:偶数的数目必定和全体整数的数目一般多。试看以下两排数:

    1,2,3,4,5,6,……

    2,4,6,8,10,12,……

    上排中每有一项,下排中就有相应的一项;所以,两排中的项数必定一般多,固然下排只是由上排中各项的一半构成的。

    ①即微积分学;原文是它的旧名称“infinitesimalcalculus”。——译者

 444

    第二篇 从卢梭到现代34

    莱布尼兹注意到了这一点,认为这是一个矛盾,于是他断定,虽然无穷集团是有的,却没有无穷数。反之,盖奥尔克。康托大胆否定了这是矛盾。他做得对;这只是个奇特事罢了。

    盖奥尔克。康托把“无穷”集团定义成这样的集团:它具有和整个集团包含着一般多的项的部分集团。他在这个基础上得以建立起一种极有意思的无穷数的数学理论,从而把以前委弃给神秘玄想和混乱状态的整个一个领域纳入了严密逻辑的范围。

    下一个重要人物是弗雷格,他在1879年发表了他的第一部著作,在184年发表了他的“数”的定义;但是,尽管他的各种发现有划时代的性质,直到1903年我引起大家对他的注意时为止,他始终完全没得到人的承认。

    值得注意的是,在弗雷格以前,大家所提出的一切数的定义都含有基本的逻辑错误。照惯例总是把“数”和“多元”当成一回事。但是,“数”的具体实例是一个特指的数,譬如说3,而3的具体实例则是一个特指的三元组。三元组是一个多元,但是一切三元组所成的类——弗雷格认为那就是3这个数本身——是由一些多元组成的一个多元,而以3为其一实例的一般的数,则是由一些多元组成的一些多元所组成的一个多元。由于把这个多元与一个已知的三元组的简单多元混淆起来,犯了这种基本的语法错误,结果弗雷格以前的全部数的哲学成了连篇废话,是最严格意义上的“废话”。

    由弗雷格的工作可以推断,算术以及一般纯数学无非是演绎逻辑的延长。这证明了康德主张的算术命题是“综合的”

    、包含着时间关系的理论是错误的。怀特海和我合著的

 445

    44卷三 近代哲学

    《数学原理》(Princi-piaMathematica)

    中详细讲述了如何从逻辑开展纯数学。

    有一点已经逐渐明白了:哲学中有一大部分能化成某种可称作“句法”的东西,不过句法这个词得按照比迄今习用的意义稍广的意义来使用。有些人,特别是卡尔纳普,①曾提出一个理论,认为一切哲学问题实际都是句法问题,只要避开句法上的错误,一个哲学问题不是因此便解决了,就是证明是无法解决的。我认为这话言过其实,卡尔纳普现在也同意我的看法,但是毫无疑问哲学句法在传统问题方面的效用是非常大的。

    我想简单解释一下所谓摹述理论,来说明哲学句法的效用。我所说的“摹述”是指像“美国的现任总统”一类的短语,不用名字来指明一个人或一件东西,而用某种据假定或已知他或它特有的性质。这样的短语曾造成很多麻烦。假定我说“金山不存在”

    ,再假定你问“不存在的是什么?”如果我说“是金山”

    ,那么就仿佛我把某种存在归给了金山。很明显,我说这话和说“圆正方形不存在”不是一样的陈述。这似乎意味着金山是一种东西,圆正方形另是一种东西,固然两者都是不存在的。摹述理论就是打算应付这种困难以及其他困难的。

    根据这个理论,一个含有“如此这般者”

    (theso-and-so)形式的短语的陈述,若加以正确分析,短语“如此这般

    ①卡尔纳普(RudolfCarnap,1891—1970)

    ,美国哲学家,逻辑学家。——译者

 446

    第二篇 从卢梭到现代54

    者“便没有了。例如,拿”司各脱是《威弗利》的作者“这个陈述来说。摹述理论把这个陈述解释成是说:”有一个人、而且只有一个人写了《威弗利》,那个人是司各脱。“或者,说得更完全一些就是:”有一个实体c,使得若x是c,‘x写了《威弗利》’这个陈述便是真的,否则它是假的;而且c是司各脱。“

    这句话的前一部分,即“而且”二字以前的部分,定义成指“《威弗利》的作者存在(或者曾存在,或者将存在)的意思。”因而,“金山不存在”的意思是:“没有一个实体c,使得当x是c时,‘x是金的而且是山’是真的,否则它就不是真的。”

    有了这个定义,关于说“金山不存在”是指什么意思的难题就没有了。

    根据这个理论,“存在”只能用来给摹述下断言。我们能够说“《威弗利》的作者存在”

    ,但是说“司
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!