友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
飞读中文网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

经济数学模型化过程分析-第15章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



考虑未知参数的函数   
求出参数(b1;b2…bk)的估计量(b1;b2…bk)使上述函数|(b1;b2…bk)达到最小值的方法称为最小二乘方法。本章中设X1t =1;主要是为了考虑包括常数项的模型。如果引进向量和矩阵符号可以把(1)写成矩阵表达形式。 
Y=Xb+U (3) 
其中Y=(Y1;Y2;…Yn)T   
b=(b1;b2;…bk)T 
U=(u1;u2;…un)T 
平方和的函数形式(2)变成向量的内积形式 
|(b)=(Y-Xb)T(Y-Xb) (4) 
根据矩阵函数的求导法则和微分学中求极值的方法可知,要使(4)达到极小值,参数的估计量应满足条件:   
即 
XTXb=XTY 
容易得到 
b=(XTX)…1XTY 
b称为b的最小二乘估计, =Xb称为估计回归平面,注意到为求出OLS估计用到了(XTX)…1存在的条件。为了使OLS估计b具有统计上一些重要的性质,对于模型(3)有必要做出如下的假定: 
1)误差项ut的期望为0,即E(ut)=0 (t=1;2;…n) 
2)不同时点的误差项之间不相关,即E(utus)=0 (t1s;t;s=1;2; …n) 
3)ut的方差和t无关,即Var(ut)=s2 (t=1;2;…n) 
4)Xit为确定性变量,即E(Xitut)=0 
5)由X的列向量构成的向量组线性无关,即r(X)=k ……,这表明距离现在越近,影响也就越大。把bi代入(13)式,得出 
Ct =a+b(1…l) Yt+b(1…l)l Yt…1+b(1…l)l2 Yt…2+ …… (14) 
用l乘次Ct…1可得 
l Ct…1=la + b(1…l)l Yt…1+b(1…l)l2 Yt…2+ …… (15) 
(14)…(15)给出 
Ct …l Ct…1 = a (1…l)+b(1…l) Yt (16) 
即 
Ct=a (1…l)+b(1…l) Yt+l Ct…1 (17) 
Brown消费函数本质上是考虑了消费习惯影响到本期的消费,从模型中可以看出,短期MPC(边际消费倾向)为b(1…l),长期MPC为b。 
利用表9。1的数据,Brown消费函数的估计结果由下面的(18)式给出 
C=…74。38+0。6095Y/CP+0。3706C(…1) (18) 
(…1。02) (5。44) (2。88) 
R2=0。997 S=131 F(2;16)=2291 DW=1。78 
如果考虑在Brown消费模型的基础上在增加一个解释变量实际储蓄存款利率(一年期利率),我们得到以下结果: 
C=…8。894+0。4839Y/CP+0。5064C(…1) … 9。683R … 295。4D1 (19) 
(…0。125) (4。29) (3。95) (…1。73) (…2。18) 
R2=0。997 S=118 F(4;14)=1427 DW=1。76 
(19) 式中的变量D1称为虚拟变量,它刻画了1989年物价的急剧波动。 
从上面3种不同形式的消费函数的估计结果来看,回归模型中参数的符号及大小不仅和经济理论相吻合,而且参数的估计值在统计上有意义。3种模型中的长期MPC分别为0。93、0。97、0。98,在数值上没有发生明显的变化。这种高MPC反映了中国城市居民在此期间的消费特点,我们注意到1965年…1985年间的美国、德国(西德)、法国的宏观消费函数中的MPC都在0。9以上。考虑到MPC和投资乘数的关系,从投资乘数M=1/(1…MPC);可以得到在高MPC的情况下,投资乘数的效果增加。但是,应该注意的是,随着近年我国居民收入结构的改变和各种金融证券市场的日趋繁荣,消费函数中应考虑加入金融资产和隐性收入等变量,这样更能够说明城市居民的消费状况。 
§7。2 计量模型分析中的诸问题 
在第1节中看到模型中误差项ut的诸假设对于OLS估计具有blue性质至关重要,特别是如果ut关于方差一定和不
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!